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Abstract

The closed-loop optimization paradigm of an oil field can increase oil recovery and reduce water
production, maximizing economic gains. One way to improve the management of a field involves
designing optimal production strategies by means of dynamically adjusting the production flow rates or
bottom-hole pressures over the reservoir life-cycle and operation. A major difficulty occurs in optimizing
production of all wells, according to constraint along the production of a field. These optimal control
strategies are often difficult to be realized in practice due to the large number of control variables to be
adjusted during the optimization process, requiring large amount of computational infrastructure in place.
These challenges become even more evident with larger number of wells and with complex large-scale
reservoirs. For these reasons, this work proposes a new hierarchical hybrid optimization framework
employing model order reduction techniques in a closed-loop fashion. This paper proposes the use of
proper orthogonal decomposition (POD) with the discrete empirical interpolation method (DEIM), to
reduce the computational effort, and to perform local optimization by means of gradient-based approach
by using forward and adjoint models followed by aggressive line search process. This approach was
applied in the UNISIM-I-D benchmark case, testing the performance of the optimization proposed in a
complex reservoir with several producer and injector wells, whose conventional optimization would
require a high computational cost. The results showed an improvement in reservoir management by means
of additional gains in terms of NPV, and through the proposed robust optimization algorithm, we show
advantages of the operation of the wells and in the reduction in the computational efforts necessary to
attain optimal solutions. The efficiency of the gradient-based approach coupled with model order
reduction can be combined in future entire optimization workflow with global optimum algorithms like
Fast Genetic Algorithm.

Introduction
The development of an oil field involves many challenges, among them: (1) maximize profit and reduced
risks, (2) achieve higher oil recovery, (3) reduce uncertainties associated with reservoir characteristics
(static and dynamic properties), and (4) decrease the high flow of water as a limiting factor in the oil
production. Although the weight put into some of these issues depend upon the life stage of an oil field,



and can be non-existent in many circumstances, the
objective of any project development in certainly
related to profits and risks.

The management of an oil field can be tackled by
finding the optimal production strategy (or strate-
gies during the reservoir life cycle) by means of
dynamically adjusting the production flow rates or
bottom-hole pressures over the reservoir production
time. This optimization, in turn, can be tight to some
form of economical objective function, very often
indicated by the net present value (NPV) of the
operations. As it is known, realistic field production
is not set as the operator will, but it is driven by
operations constraints defined by the capacity of the
platform and the surface facilities required to separate, process and store (or drain) all production (oil,
water and gas). A major difficulty occurs in optimizing production of all wells, according to this constraint
along the production of a field. For this reason, designing optimal well control strategies taking into
account realistic production constraints and well allocation rates is of paramount for the increase in
reservoir recovery factor and, in turn, the NPV of the project. Accordingly, this article aims to develop
a methodology for the optimization of the flow of the wells over life-cycle time to produce a field.

Many studies published in the literature (Litvak et al., 2002; Brouwer et al., 2004; Liang et al., 2007;
van Essen et al., 2009; Cardoso & Durlofsky, 2010; Viadana et al., 2012; Gildin et al., 2013) emphasize
the need and importance of performing closed-loop optimization using optimal control theory. These
proposed algorithms have been implemented in benchmarks developed for the optimization under the
uncertain paradigm, e.g. Norne and Brugge fields (Rwechungura et al., 2010; Peters et al 2013).

The overall experience is that the methodologies implemented can indeed improve the economic gains
and reduced uncertainties in the field. However, they rely on large-scale computations owing to the
fine-scale reservoir models derived for the full field simulations. In order to overcome this difficult, this
work proposes a new hierarchical hybrid optimization framework employing model order reduction
techniques in a closed-loop fashion. We utilize the new reservoir benchmark called UNISIM-I-D (Gaspar
et al., 2013).

Reduced-order modeling techniques have shown to be a viable way of mitigating the large-scale nature
of the simulation models and accelerate the computations taking place in subsurface applications. The
options range from non-intrusive methods, i.e., do not depend on modifications of a reservoir simulation

Figure 1—UNISIM-I-D benchmark case used in this article.

Table 1—Economic Scenario

Parameter Value Unity

Oil price 62.9 USD/m3

Water production cost 6.29 USD/m3

Water injection cost 6.29 USD/m3

Table 2—Bounded restrictions of the wells for the optimization pro-
cess

Producer Wells Injector Wells

Minimum BHP 100 barsa Minimum BHP 300 barsa

Maximum BHP 300 barsa Maximum BHP 700 barsa
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code, to a more intrusive and sophisticated methods
that depend on several modifications of legacy code
or the development of new simulator codes. For the
intrusive schemes, reduced-order modeling by pro-
jection has been used in the systems/controls-like
framework, such as the balanced truncation and
proper orthogonal decompositions (POD) (Volk-
wein & Hinze, 2005; Gildin et al., 2013), trajectory-
piecewise linear (TPWL) (Cardoso & Durlofsky,
2010), bilinear Krylov subspace methods (Ghasemi
et al., 2014) and quadratic bilinear model order
reduction (Gildin and Ghasemi, 2014). In
Chaturantabut et al. (2010), the authors utilized a
variant of POD for nonlinear systems, called POD-
DEIM (discrete empirical interpolation method) in
which the nonlinear terms are approximated by
some form of interpolation, and therefore great re-
ductions can be achieved in computational effort.

As far as the optimization, we employ a local
optimization, which can be combined in future work
with a global optimization workflow. On a higher
level, one can employ a fast genetic algorithm
(FGA), which is a robust and efficient method for
sweeping the solution space with many variables
and it has been used in some studies (Almeida et al.,
2010; Sampaio et al., 2011; Sampaio et al., 2012),
showing significant progress compared to classical
optimization methods. Due to its low efficiency in computational time and in finding the local maximum,
we introduce a lower level optimization in our framework. On a lower level, the local optimization was
performed by gradient-based method for a better refinement of the local solution. This approach takes
advantage of the gradient-based approaches for local maximization, but at the same time, the computa-
tions are more efficiently than using GA for the entire optimization workflow.

In order to simplify our framework, we consider deterministic conditions, i.e., there is no need to
realize the history matching of the model. To this end, the production optimization strategies are defined
after the reservoir is being development, i.e., after the project variables, namely, the number of wells, type,
placement and schedule, and capacities constraints of liquid, oil and water production and also water
injection are pre-defined.

This manuscript is organized as follows. We start by introducing the UNISIM-I benchmark model and
state the simplifications taken in this paper. We then review model reduction and optimization and finally
apply these concepts to the simplified UNISIM. Some discussions and conclusions are drawn in the end
of the paper.

UNISIM-I-D Benchmark
Reservoir Model
The UNISIM-I was developed in response to the Brazilian campaigns in dealing with carbonate reservoirs.
The reference model is based (after some modifications) on the structural, facies and petrophysical
characteristics of the Namorado Field, located in Campos Basin, Brazil. The original model as described
in (Gaspar et al., 2013), contains approximately 3.5 million of active grid blocks. In this paper, we use a

Figure 2—Schematic of POD-DEIM algorithm
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modified version of the original reservoir, such that the dimensions of the grid are 81x58x20 blocks with
approximately 37,000 active cells. The grid used in the models is Corner-point. The optimization
methodology was applied to the UNISIM-I-D benchmark case (Gaspar et al., 2013) to optimize the control
variables in an optimized production strategy. Figure 1 show the model used in this work with final oil
saturation.

Geological, PVT and petrophysical data for this model are available (Gaspar et al., 2013). The
production history data contains liquid production rates of producer wells. Core description, well log
information and seismic data were used to build the structural, facies and petrophysical models.

Economic Scenario
We used a very simple economic scenario as shown in Table 1.

Well Configurations
Fourteen producers and eleven injector wells were used, all horizontal with 500 m of length. The producer
wells were completed in the second layer of the model and the injectors, the tenth and last layer of the
model. For both injectors and producers, the maximum and minimum bottomhole pressure were defined
as upper and lower boundaries for the optimization process, as listed in Table 2.

Methodology
Step 1: Model Order Reduction – POD-DEIM

The proper orthogonal decomposition (POD) method has been used in several disciplines, ranging from
aerodynamics, to thermal systems to finance, and to weather prediction (see Antoulas, et al. 2001). The

Figure 3—Flowchart of the local optimization framework.

Figure 4—Training Schedule for reduced model.
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method is simple to implement, as the projection
matrices can be computed from several forward
simulations of a training set of inputs and the re-
corded snapshots of the solution variables. The
POD method has been applied in the reservoir sim-
ulation and production optimization (Brouwer et al.,
2004). Gildin et al. (2013) and Ghasemi et al.,
(2015) proposed the use of proper orthogonal de-
composition (POD) to perform the reduction of
reservoir model, and thus reduce the computation
time spent in the simulations. To reduce the com-
plexity of the nonlinear terms and increase the speed
of each run, the POD was modified by adding a
discrete empirical interpolation method (DEIM),
forming the POD-DEIM method. Here we briefly
explain the application of POD and its modification
based on DEIM.

The first step is the training phase in which
snapshots of high fidelity model at each time step,
the pressure, saturation, velocity, etc., of all grid
blocks are saved. These snapshots are assembled
into snapshot matrices. After applying a singular
value decomposition (SVD) on these matrices, we
select the projection matrix by indicating the frac-
tion of total energy to be captured. The fractional
energy is defined as,

(1)

Figure 5—Singular values of snapshot matrices

Table 3—Comparing simulation of high fidelity model and reduced model

# Pressure # Velocity # Face Pressure # Saturation Simulation Time (s)

Fine Scale Model 38466 120897 9499 38466 259

Reduced Model 5 23 5 18 64

Figure 6—Relative saturation error between reduced model and high
fidelity one

Figure 7—Comparison of water cut at producers between reduced
model (solid line) and high fidelity one (dashed line)
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The number of basis, l, is selected such that 0.9 � E � 1 to have reasonable error. After finding number
of basis from each matrix of solutions, the corresponding basis matrix � can be constructed by the first
l columns of the corresponding eigenvector matrix. Therefore, the new state variable can be defined as,

(2)

where x is any state of the system and xr is the reduced state. Substituting the new reduced state into
the pressure and saturation equation results in reduced systems as follows,

(3)

(4)

where �r, pr and sr are reduced flux, pressure and saturation, respectively. The reduced pressure
equation in (3) is a determined linear system and can be solved by direct solver or iterative solvers
efficiently. The saturation equation results in a reduced residual equation as in (4). This equation is
nonlinear and can be solved efficiently by using the Newton-Raphson method. Note that the correspond-
ing Jacobian of the reduced residual defined as,

(5)

In general, implementing POD in the reservoir simulator is fairly easy as long as the source code is
available. The main drawback of the POD stems from the fact that at each iteration the resulted results
should be projected back to the full scale solution to update the fluid properties and find the full residual
and Jacobian, which are nonlinear functions of state variable. However, one can modify the POD method
to reduce the complexity of the nonlinear terms. One of these methods is discrete empirical interpolation
(DEIM) as will be explained in the next section.

POD-DEIM The Discrete Empirical Interpolation Method (DEIM) is a variant of the Empirical Inter-
polation Method (EIM) proposed for reducing the complexity of the solution of partial differential
equations (PDE) by replacing the orthogonal projection of POD-Galerkin with an oblique projection. In

Table 4—Optimization iteration and runtime comparison

Outer Iteration Inner Iteration Total Iteration Runtime (s) Final NPV

Fine Scale Model 15 73 88 14184 38.1

Reduced Model 4 15 19 1681 35.6

Figure 8—Optimal schedule using high fidelity model.
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this case, the nonlinearities are also approximated based on interpolation of a POD-like basis obtained
from saving a snapshot matrix formed by the nonlinear terms. It constructs an interpolation function used
for the evaluation of the nonlinear terms, by selecting an optimal subset of indexes through a greedy
algorithm and the nonlinear function only needs to be evaluated at this greatly reduced set of component.

Mathematically one can approximate the nonlinear function g(x) by projecting it onto the subspace
spanned by a basis {�1, . . ., �m} � RN of dimension m � N as,

(6)

where the columns of � are the projection basis obtained by applying svd to the nonlinear function
snapshots, and c(x) are the corresponding coefficient vector. These coefficient are determinced by
selecting the m rows of the overdetermined system in Eq. 14 that span the largest range of solutions,
through greedy algorithm (Chaturantabut et al., 2010), as follows

(7)

where �m is the first m column of matrix � and P is a selection matrix defined as,

(8)

where ep1 is a vector that is zero everywhere except index p1 and so on.
In reservoir simulation the rock and fluid properties are nonlinear functions of pressure or saturation.

Also, depending on the problem formulation, one may deal with mobility or fractional fluid as a nonlinear
function of pressure and saturation. Evaluating these functions (and also the derivatives) at all cells is
computationally expensive. Specifically in the case of applying POD, it requires projecting back to fine
scale model at each iteration. Therefore, we apply DEIM to evaluate these functions at very few cells and
find the properties at the rest of the cells by interpolation. The framework of POD-DEIM is illustrated in
Figure 3.

POD-DEIM Algorithm Run the fine scale model with some training inputs (variation of inputs in their
possible range) and save the pressure, saturation and the nonlinear function at each time step;

Select the appropriate number of basis based on svd to capture the necessary energy of each variable;
Apply deim function to nonlinear function basis to find the most important cells (selection matrix)

based on greedy algorithm;
Approximate all the nonlinear functions in formulation with DEIM.

Figure 9—Optimal schedule using reduced model.
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Step 2: Local Optimization Process
This local optimization comprises forward model and adjoint model, which are combined to find the

gradient, followed by aggressive line search, which finds the greatest growth of the function in the
gradient direction. In future work, this local optimization process can follow by global optimization
process like Fast Genetic Algorithm with advanced genetic operators that aims to accelerate the search for
the global maximum. Figure 3 describes the implementations of this method.

Case Study
This section presents the application of the methodology in a reservoir model based on a Brazilian
offshore oil field, see (Gaspar et al., 2013). This model was ran in MATLAB Reservoir Simulation
Toolbox (MRST, see Aarnes et al. (2007)).

Results and Discussions
In this section we apply the optimization on waterflooding the reservoir. It is assume that the reservoir is
above bubble point pressure and the reservoir is saturated with oil and water. Note that we assumed the
reservoir is saturated with oil at the initial time. We also assumed Corey’s model for the relative
permeability curve as a quadratic function. The permeability of the reservoir is as provide in the
benchmark.

Model Order Reduction
Here we apply the model order reduction work flow explained in this paper to the UNISIM benchmark.
The model was run for 1000 days based on schedules shown in Figure 4. for bottom-hole pressure of the
producers and injectors. The pressure (Po), flux (Vel), water saturation (Sw) and fractional flow of water
(fw) are saved every 10 days. Thus we have 100 snapshots for each state. After applying svd to each
snapshot matrix, the singular values are obtained and are compared in Figure 5. As can be seen, there is

Figure 10—Top view of final oil saturation with optimal schedule after 1500 days.
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a faster decay in the singular values for the pressure and velocity compared to saturation and fractional
function. Thus, we need more basis for saturation and nonlinear functions of it to have small error.

The selection criteria here was to capture at least 99% of the energy of snapshots. The number of basis
is compared between the reduced model and the original fine scale one in Table 3. It is obvious that
several orders of magnitude in model order reduction is obtained in this example. Also, the simulation
runtime reduced more than 4 time.

The relative saturation error at each time step is calculated as follows,

This error is shown in Figure 6 for this model. As it is shown the error is less than 2% for most of the
simulation time. Figure 7 compares the water cut between the reduced model and the high fidelity
reservoir model. It reveals that the reduced model can reproduce very similar results with less compu-
tational runtime.

Optimization Process
In this section, we run gradient based optimization to find the bottom-hole pressure for 14 producers and
11 injectors in the field for a period of 1500 days. It is assumed that the bottom-hole pressure can be
changed every 30 days. Thus, we have 1250 control variables. This problem can be very computationally
expensive to run considering at each iteration the reservoir model has to be run.

The results of this optimization is compared in Table 4, which reveals that the reduced model resulted
in a close NPV, but with much less computational effort. As can be seen, the number of iterations is
reduced by one order of magnitude as the final runtime. Although we have not attined an NPV compared
with the fine scale model, we belive this can be fixed by making a judicioius choice on the number of basis
of the reduced model. Also, we ran the model for only 5 years of production and a better measure of the
dynamics of the reservoir would be attained with a longer time span.

The optimal bottom-hole pressure for producers and injectors are shown in Figure 8 and Figure 9 for
high fidelity model and reduced model, respectively. The final oil saturation in the reservoir after 1500
days by applying the optimal schedule is shown in Figure 10. As can be seen, the reduced order model
was able to work as a surrogate model inside the optimization. The oil saturation shows an efficient
migration of the oil into the producers.

Conclusions
In this paper we implemented optimization algorithms based on a reduced-order model for the UNISIM
benchmark. Model reduction was implemented to overcome the high computational cost associated with
the gradient-based optimizations. As it was pointed out, we should expect to gain accuracy and
computational savings by employing the hybrid approach, where the optimal well controls can be obtained
by a hierarchical framework using FGA on a higher level.

Nomenclature

� � viscosity, cp
� � porosity
q � flow rate, bbl/day
x � state variable vector
R � residual
J � Jacobian
N � number of grid blocks
l � number of POD basis
m � number of DEIM basis
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t � time

Subscripts

p �pressure
s �water saturation
r �reduced
o �relative to oil
w �relative to water

Subscripts

n �time step number
k �iteration number
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