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ABSTRACT 

RANAZZI, Paulo Henrique. Analysis of Main Parameters in Adaptive ES-MDA 

History Matching. 2019. 81 p. Dissertation (Master’s in science) – Polytechnic School, 

University of São Paulo, Santos, 2019. 

In reservoir engineering, history matching is the technique that reviews the uncertain 

parameters of a reservoir simulation model in order to obtain a response according to 

the observed production data. Reservoir properties have uncertainties due to their 

indirect acquisition methods, that results in discrepancies between observed data and 

reservoir simulator response. A history matching method is the Ensemble Smoother 

with Multiple Data assimilation (ES-MDA), where an ensemble of models is used to 

quantify the parameters uncertainties. In ES-MDA, the number of iterations must be 

defined previously the application by the user, being a determinant parameter for a 

good quality matching. One way to handle this, is by implementing adaptive 

methodologies when the algorithm keeps iterating until it reaches good matchings. 

Also, in large-scale reservoir models it is necessary to apply the localization technique, 

in order to mitigate spurious correlations and high uncertainty reduction of posterior 

models. The main objective of this dissertation is to evaluate two main parameters of 

history matching when using an adaptive ES-MDA: localization and ensemble size, 

verifying the impact of these parameters in the adaptive scheme. The adaptive ES-

MDA used in this work defines the number of iterations and the inflation factors 

automatically and distance-based Kalman gain localization was used to evaluate the 

localization influence. The parameters influence was analyzed by applying the 

methodology in the benchmark UNISIM-I-H: a synthetic large-scale reservoir model 

based on an offshore Brazilian field. The experiments presented considerable 

reduction of the objective function for all cases, showing the ability of the adaptive 

methodology of keep iterating until a desirable overcome is obtained. About the 

parameters evaluated, a relationship between the localization and the required number 

of iterations to complete the adaptive algorithm was verified, and this influence has not 

been observed as function of the ensemble size. 

Keywords: History Matching; Ensemble Smoother; Localization; Uncertainty 

Assessment. 

  



 

 

 

  



 

RESUMO 

RANAZZI, Paulo Henrique. Análise dos Principais Parâmetros no Ajuste de 

Histórico utilizando ES-MDA adaptativo. 2019. 81 p. Dissertação (Mestrado em 

Engenharia Mineral) – Escola Politécnica, Universidade de São Paulo, Santos, 2019. 

Em engenharia de reservatórios, ajuste de histórico é a técnica que revisa os 

parâmetros incertos de um modelo de simulação de reservatório para obter uma 

resposta condizente com os dados de produção observados. As propriedades do 

reservatório possuem incertezas, devido aos métodos indiretos em que foram 

adquiridas, resultando em discrepâncias entre os dados observados e a resposta do 

simulador de reservatório. Um método de ajuste de histórico é o Conjunto Suavizado 

com Múltiplas Aquisições de Dados (sigla em inglês ES-MDA), onde um conjunto de 

modelos é utilizado para quantificar as incertezas dos parâmetros. No ES-MDA o 

número de iterações necessita ser definido previamente pelo usuário antes de sua 

aplicação, sendo um parâmetro determinante para um ajuste de boa qualidade. Uma 

forma de contornar esta limitação é implementar metodologias adaptativas onde o 

algoritmo continue as iterações até que alcance bons ajustes. Por outro lado, em 

modelos de reservatórios de larga-escala é necessário aplicar alguma técnica de 

localização para evitar correlações espúrias e uma alta redução de incertezas dos 

modelos a posteriori. O principal objetivo desta dissertação é avaliar dois principais 

parâmetros do ajuste de histórico quando aplicado um ES-MDA adaptativo: 

localização e tamanho do conjunto, verificando o impacto destes parâmetros no 

método adaptativo. O ES-MDA adaptativo utilizado define o número de iterações e os 

fatores de inflação automaticamente e a localização no ganho de Kalman baseada na 

distância foi utilizada para avaliar a influência da localização. Assim, a influência dos 

parâmetros foi analisada aplicando a metodologia no benchmark UNISIM-I-H: um 

modelo de reservatório sintético de larga escala baseado em um campo offshore 

brasileiro. Os experimentos apresentaram considerável redução da função objetivo 

para todos os casos, mostrando a capacidade da metodologia adaptativa de continuar 

iterando até que resultados aceitáveis fossem obtidos. Sobre os parâmetros 

avaliados, foi verificado uma relação entre a localização e o número de iterações 

necessárias, influência esta que não foi observada em função do tamanho do 

conjunto. 



Palavras-chave: Ajuste de Histórico; Conjunto Suavizado; Localização; Quantificação 

de Incertezas.  



 

LIST OF FIGURES 

Figure 1 – EnKF sequential update workflow. ........................................................... 22 

Figure 2 – ES simultaneous update workflow............................................................ 24 

Figure 3 – ES-MDA iterative workflow (Adapted from EnKF and ES workflows 

from Evensen (2007)). ...................................................................................... 25 

Figure 4 – Shape of spherical and Gaussian covariance functions. .......................... 28 

Figure 5 – (a) Gaspari and Cohn, (b) Furrer and Bengtsson with Spherical 

covariance function, (c) Furrer and Bengtsson with Gaussian covariance 

function. ............................................................................................................ 28 

Figure 6 – Methodology workflow. ............................................................................. 34 

Figure 7 - Benchmark UNISIM-I-H. ........................................................................... 39 

Figure 8 - Averaged objective function evolution over the iterations for different 

ensemble sizes. ................................................................................................ 41 

Figure 9 - Inflation factor evolution over the iterations for different ensemble 

sizes. ................................................................................................................. 41 

Figure 10 - Well time series of (a) NA3D Oil Rate, (b) PROD023A Oil Rate, (c) 

NA3D Water Rate, (d) PROD023A Water Rate, (e) NA3D Bottom-hole 

Pressure, (f) PROD023A Bottom-hole Pressure. .............................................. 42 

Figure 11 - Time series of injector well INJ010 and injector well INJ022. .................. 43 

Figure 12 - First layer mean log-permeability in i-direction a before (prior) and 

after (posterior) the history matching for ensemble size equal to (b) 100, 

(c) 300, (d) 500. ................................................................................................ 43 

Figure 13 - First layer log-permeability standard deviation in i-direction a before 

(prior) and after (posterior) the history matching for ensemble size equal 

to (b) 100, (c) 300, (d) 500 ................................................................................ 44 

Figure 14 - Forecast period field cumulative oil production for ensemble size 

equal to (a) 100, (b) 300, (c) 500. ..................................................................... 46 

Figure 15 - Gaspari-Cohn correlation as a function of critical length. ........................ 61 

Figure 16 - Workflow of the adaptive ES-MDA plus Kalman gain localization. .......... 62 

Figure 17 - First layer grid top of UNISIM-I-H benchmark (wells projected). ............. 63 

Figure 18 - Values of ρ in the localization matrix for producer well NA3D and L 

= 2000 m. .......................................................................................................... 64 



Figure 19 - Inflation factor evolution over iterations for different critical lengths.

 ......................................................................................................................... 65 

Figure 20 - Time series of producer well NA3D. The gray lines represent the 

prior ensemble and the blue lines represent the posterior ensemble, red 

dots are the measurements. ............................................................................. 66 

Figure 21 - Time series of producer well PROD023A. The gray lines represent 

the prior ensemble and the blue lines represent the posterior ensemble, 

red dots are the measurements. ....................................................................... 67 

Figure 22 - Time series of water injector well INJ010. The gray lines represent 

the prior ensemble and the blue lines represent the posterior ensemble, 

red dots are the measurements. ....................................................................... 68 

Figure 23 - Time series of water injector well INJ022. The gray lines represent 

the prior ensemble and the blue lines represent the posterior ensemble, 

red dots are the measurements. ....................................................................... 69 

Figure 24 - Distribution of prior and posterior water-oil contact of the east block 

and rock compressibility. .................................................................................. 70 

Figure 25 - First layer log-permeability field in i-direction of the first realization 

before and after the assimilation for different critical lengths. ........................... 70 

Figure 26 - Normalized variance of prior and posterior models of log-

permeability in i-direction for different critical lengths. ...................................... 72 

 

  



 

LIST OF TABLES 

Table 1 - Measurement errors. .................................................................................. 39 

Table 2 – Forecast period controls. ........................................................................... 40 

Table 3 - Prior and posterior objective function values (mean ± standard 

deviation), required number of iterations and the total required simulation 

runs (including the posterior ensemble) for different ensemble sizes. .............. 41 

Table 4 - Sum of normalized variance for different ensemble sizes. ......................... 45 

Table 5 - Measurement errors in data assimilation used to construct the 

measurement errors matrix. .............................................................................. 64 

Table 6 - Mismatch of data and model objective functions (mean ± standard 

deviation). ......................................................................................................... 65 

 

  



  



 

SUMMARY 

ACKNOWLEDGEMENTS ........................................................................................... 3 

ABSTRACT ................................................................................................................. 7 

RESUMO..................................................................................................................... 9 

LIST OF FIGURES .................................................................................................... 11 

LIST OF TABLES ..................................................................................................... 13 

SUMMARY ................................................................................................................ 15 

CHAPTER 1 - INTRODUCTION ............................................................................... 17 

1.1 Objectives .................................................................................................... 19 

1.2 Ensemble Methods ...................................................................................... 19 

1.2.1 Kalman Filter (KF) ................................................................................ 19 

1.2.2 Ensemble Kalman Filter (EnKF) ........................................................... 21 

1.2.3 Ensemble Smoother (ES) ..................................................................... 22 

1.2.4 Ensemble Smoother with Multiple Data Assimilation (ES-MDA) ........... 24 

1.3 Distance-based Kalman gain localization ................................................. 26 

1.4 Dissertation overview ................................................................................. 28 

CHAPTER 2 - ENSEMBLE SIZE INVESTIGATION IN ADAPTIVE ES-MDA 

RESERVOIR HISTORY MATCHING ........................................................................ 31 

2.1 Introduction.................................................................................................. 31 

2.2 Methodology ................................................................................................ 33 

2.2.1 Adaptive ES-MDA in the History Matching ........................................... 34 

2.2.2 Posterior Data Matching ....................................................................... 38 

2.2.3 Posterior Updated Models .................................................................... 38 

2.3 Case Study ................................................................................................... 38 

2.4 Results and Discussion .............................................................................. 40 

2.5 Conclusion ................................................................................................... 46 

2.6 Acknowledgements ..................................................................................... 47 



CHAPTER 3 - INFLUENCE OF THE KALMAN GAIN LOCALIZATION IN 

ADAPTIVE ENSEMBLE SMOOTHER HISTORY MATCHING ................................ 49 

3.1 Introduction ................................................................................................. 49 

3.2 Methodology ................................................................................................ 53 

3.2.1 Adaptive ES-MDA ................................................................................ 54 

3.2.2 Objective Functions.............................................................................. 59 

3.2.3 Kalman Gain Localization .................................................................... 60 

3.3 Case Study .................................................................................................. 62 

3.4 Results of Assimilation of Production Data ............................................. 65 

3.5 Conclusions ................................................................................................ 72 

3.6 Acknowledgments ...................................................................................... 73 

CHAPTER 4 - CONCLUSIONS ................................................................................ 75 

4.1 Future Research .......................................................................................... 75 

REFERENCES ......................................................................................................... 77 

 



17 
 

CHAPTER 1 - INTRODUCTION 

One of the most important tasks in the petroleum engineering is the forecast of 

the reservoir performance during its entire production life. The estimated reservoir 

behavior is used to define many production aspects, for example, flowlines, production 

platform settings, etc. Because of the computational advances, the most used tool to 

predict the reservoir behavior is the numerical reservoir simulation. The reservoir 

simulator is composed by a set of partial differential equations that represents the fluid 

flow through the reservoir (e.g. Darcy’s law, Fourier law and Fick’s laws of diffusion) 

(SANTOS, 2000). These equations are discretized in both space and time, and then, 

solved using numerical methods. 

There are many properties used as input data to the construction of a simulation 

model, some examples are: porosity, permeability, fluid-contact depths, fault 

transmissibilities and fluid properties. These data are obtained through many 

acquisition sources, for example, core samples, well logs, rock and fluid laboratory 

tests, etc. These acquisition methods (most of them, indirect methods) can result in 

reservoir model description inaccuracies (uncertainties), and consequently, in errors in 

the numerical simulation (COATS, 1969). These errors can lead to a discrepancy 

between the simulator output and the measured (or observed) data, making it 

impractical to predict the future reservoir performance, since the model cannot 

reproduce the current behavior precisely. So, it is possible to conclude that reducing 

this discrepancy it will result in a reservoir forecast with better reliability. The process 

of modifying the uncertain reservoir parameters in order to reduce the discrepancy 

between the simulated and observed data is called history matching. 

History matching can mathematically be generalized into two steps: forward and 

inverse problem. According to Tarantola (2005), the “forward problem” is a term used 

when a set of observable parameters 𝐝 (e.g., wells bottom-hole pressure, oil and water 

rates, etc.) is predicted as function of a set of model parameters 𝐦 (e.g., porosity, 

permeability, fluid contacts, etc.) and a forward operator 𝐠 (usually nonlinear): 

 𝐝 = 𝐠(𝐦) (1) 

and, 

 𝐝 = [BHP,OPR,WPR, GOR, etc ]𝐓 (2) 
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and, 

 
𝐦 = [𝜙1, … , 𝜙𝑚, 𝑘𝑥1, … , 𝑘𝑥𝑚, 𝑘𝑦1, … , 𝑘𝑦𝑚]

𝐓

 (3) 

 In reservoir engineering, the forward operator represents the numerical 

reservoir simulator, 𝐦 the uncertain reservoir parameters and 𝐝 the available 

observable data. History matching is an inverse problem: the model input is unknown 

(reservoir parameters) and the model output is known (measured reservoir 

production). So, the history matching can be described as the act of modifying 𝐦 in 

order to achieve a vector 𝐝 that corresponds with the measured data (the measured 

data is commonly named as 𝐝obs). Besides the parameters, the measurements also 

are subjected to uncertainties (TARANTOLA, 2005) that must be considered in the 

matching. Thus, it is clear that the main objective of history matching is to obtain a 

simulator response that corresponds to the measured reservoir behavior only 

approximately. 

The matching can be divided into manual (trial and error) and automatic history 

matching. In the matching performed by trial and error, the reservoir engineer modifies 

only a subset of the uncertain parameters manually resulting in a single-matched 

model (RWECHUNGURA; DADASHPOUR; KLEPPE, 2011). The large cost of 

computing the reservoir simulator output makes the manual history matching approach 

impractical (OLIVER; REYNOLDS; LIU, 2008). History matching is considered an ill-

posed problem because of the non-uniqueness of the solution, consequently, multiple 

combinations of the parameter values (often infinite combinations) can result in equally 

good matches (OLIVER; CHEN, 2011). 

Clearly, the problem of finding 𝐦 that satisfies 𝐝obs = 𝐠(𝐦), can be treated as 

an optimization problem, making possible an assisted approach. The concept of 

assisted history matching can be explained in the following steps: (1) Construction of 

a mathematical model; (2) Definition of an objective function; (3) Application of a 

minimization algorithm (RWECHUNGURA; DADASHPOUR; KLEPPE, 2011). Some 

examples of minimization algorithms are evolutionary algorithms, gradual deformation, 

neighborhood algorithm, gradients and adjoint methods, simultaneous perturbation 

stochastic approximation (SPSA), Kalman Filter methods, etc. 

Oliver and Chen (2011) pointed out that Ensemble Kalman Filter (EnKF) is a 

history matching solution for realistic problems, but after their work several other 
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Kalman Filter methods were applied successfully in practical history matching 

problems. One of the most recent techniques used to perform the history matching 

process is the Ensemble Smoother with Multiple Data Assimilation (ES-MDA) 

(EMERICK; REYNOLDS, 2013). The ES-MDA is an iterative ensemble-based data-

assimilation technique, it means that an ensemble of model realizations is used to 

represent the uncertainties in a model parameter estimation problem (SKJERVHEIM 

ET AL., 2011). 

1.1 Objectives 

 The main objective of this dissertation is to apply an adaptive ES-MDA in a 

history matching problem of a large-scale reservoir model, in order to verify the impact 

of the main parameters in the adaptive assimilation scheme. Two important 

parameters were evaluated: (1) Ensemble size – the number of model realizations 

used; (2) Localization – weights in the assimilation according to the distance between 

the parameter and the data. 

1.2 Ensemble Methods 

In “Ensemble Methods”, an ensemble of models is used to represent and 

quantify the uncertain parameters and reservoir forecast. The following sections 

describe the basic theory of the Kalman Filter and the developments of the Ensemble 

Smoother with Multiple Data Assimilations (ES-MDA), algorithm used in this 

dissertation. 

1.2.1 Kalman Filter (KF) 

 The Kalman Filter (KALMAN, 1960) is a recursive (sequential) estimator, 

optimal for linear models. In the forward step, both state 𝐲 and uncertainties 𝐏 

(covariance) of the system are updated: 

 𝐲𝑘+1 = 𝑭𝐲𝑘 (4) 

and, 

 𝐏𝑘+1 = 𝑭𝐏𝑘𝑭
T + 𝑸 (5) 
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where 𝐲 is the vector containing the uncertain parameters and state of the system, 𝑭 

is the linear forward operator and 𝑸 is the error covariance matrix for the model errors. 

These errors are assumed due uncertainties in the forward models (physical modelling 

and numerical approximations) (EVENSEN, 2003). Equations 2 and 3 are then 

integrated forward in time to produce the forecast that will be corrected in the Kalman 

Filter analysis step in all times that contain available measurements before the 

integration continues (also called as sequential assimilation method): 

 𝐲𝑎 = 𝐲𝑓 + 𝐏𝑓𝑯T(𝑯𝐏𝑓𝑯T + 𝐂D)
−1(𝐝obs −𝑯𝐲

𝑓) (6) 

and, 

 𝐏𝑎 = 𝐏𝑓 − 𝐏𝑓𝑯T(𝑯𝐏𝑓𝑯T + 𝐂D)
−1𝑯𝐏𝑓 (7) 

where 𝑯 is the measurement operator that relates the model state to the observations 

considering the measurement errors, 𝐂D is the covariance matrix for the measurement 

errors, 𝑓 represent forecast and 𝑎 represent analysis. The term 𝐏𝑓𝑯T(𝑯𝐏𝑓𝑯T + 𝐂D)
−1 

is also called “Kalman gain matrix”. 

 𝑲 = 𝐏𝑓𝑯T(𝑯𝐏𝑓𝑯T + 𝐂D)
−1 (8) 

 If the measurements are uncorrelated, the covariance matrix will be the diagonal 

matrix: 

 

𝐂D =

[
 
 
 
 
𝜎1
2 0 ⋯ 0

0 𝜎2
2 ⋮

⋮ ⋱ 0
0 ⋯ 0 𝜎𝑁𝑑

2
]
 
 
 
 

 (9) 

being 𝜎 the standard deviation of each measurement error and 𝑁𝑑 the number of 

measurements of the system. 

 For large models, the cost of upgrading the model covariance (Equation 5) 

matrix is extremely large, what makes it impracticable. Also, for nonlinear models, 

linearization of the model is required for updating the covariance. The Extended 

Kalman Filter uses the tangent linear operator of the nonlinear model to represent 𝑭 in 

Equation 9 (EVENSEN, 2003), however this linearization is not suitable for large 

models. 
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1.2.2 Ensemble Kalman Filter (EnKF) 

 To overcome the difficulties of the KF in nonlinear and large models, Evensen 

(1994, 2003) proposed the Ensemble Kalman Filter (EnKF). The main feature of the 

EnKF is the use of an ensemble of models to represent the uncertainties and compute 

the covariance of the system (avoiding the calculation of Equation 3). Denoting 𝑗 as 

the index for the 𝑗th member of the 𝑁𝑒-size ensemble, and 𝐠 being the nonlinear 

forward operator (as described in the previous forward problem definition), the forward 

step of all members in the EnKF can be defined as: 

 𝐲𝑗,𝑘+1 = 𝐠(𝐲𝑗,𝑘) (10) 

where 𝑗 = 1, … , 𝑁𝑒. So, the covariances are estimated around the ensemble mean of 

the state (EVENSEN, 2003): 

 𝐏𝑓 ≅ 𝐏𝑒
𝑓
= (𝐲𝑓 − 𝐲̅𝑓)(𝐲𝑓 − 𝐲̅𝑓)T̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (11) 

and, 

 𝐏𝑎 ≅ 𝐏𝑒
𝑎 = (𝐲𝑎 − 𝐲̅𝑎)(𝐲𝑎 − 𝐲̅𝑎)T̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (12) 

where the overbars denote the ensemble mean. The analysis step in the EnKF follows 

for all ensemble members: 

 𝐲𝑗
𝑎 = 𝐲𝑗

𝑓
+ 𝐏𝑒

𝑓
𝑯T(𝑯𝐏𝑒

𝑓
𝑯T + 𝐂D)

−1
(𝐝obs,𝑗 −𝑯𝐲𝑗

𝑓
) (13) 

 Burgers, van Leeuwen and Evensen (1998) pointed out the necessity to treat 

the observations as random variables in the EnKF. So, the ensemble of observations 

can be defined as: 

 𝐝obs,𝑗 = 𝐝obs + 𝜀𝑗 (14) 

being 𝐂D = 𝜀𝜀T̅̅ ̅̅ ̅ as the ensemble goes to infinity. Figure 1 shows the sequential update 

procedure used in the EnKF. The blue arrows represent the forward step (Equations 7 

and 9). The green arrows represent the EnKF recursive updates (Equations 9 and 10) 

with the available measurements represented by the red arrows. 
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Figure 1 – EnKF sequential update workflow. 

 
Source: Evensen (2007). 

 In the first application of EnKF to update the uncertain reservoir parameters in 

the petroleum engineer, Nævdal, Mannseth and Vefring (2002) applied the EnKF to 

continuous update only the near-well permeability in a simple reservoir model. After 

this, Nævdal et al. (2003) applied the EnKF in two examples: a synthetic case and a 

simplified field model to update the permeability of the entire reservoir model. Since 

then, EnKF and variants have been applied in the practical history matching problems, 

for example, Zafari and Reynolds (2005), Seiler et al. (2009), Zhang and Oliver (2011), 

Heidari et al. (2013), Shuai et al. (2016), Xu et al. (2018). 

 The recursive methodology of the EnKF can lead to some issues during the 

application in history matching. Some issues can occur due to the simulations restarts 

and the necessity of update the state variables (e.g. pressure and saturation in all 

gridblocks) at each assimilation step. The restarts can lead to a large computational 

effort and the state updates can result in inconsistencies between parameter and state 

(leading to spurious correlations and nonphysical values). 

1.2.3 Ensemble Smoother (ES) 

 The Ensemble Smoother (ES) is a simultaneous assimilation variant of the 

EnKF, proposed by van Leeuwen and Evensen (1996) as an alternative to avoid the 

recursive updates and state updates. The ES update has the same form than EnKF 

updates, with the difference that all data are assimilated simultaneously in a single 

update step. The single ES update also makes unnecessary the state updates: the 
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forward step of the updated ensemble runs again from time zero with the initial state 

of the system (Figure 2). So, the ES can be treated as a parameter estimation problem: 

 𝐝𝑗
𝑓
= 𝐠(𝐦𝑗

𝑓
) (15) 

where 𝐦 represents only the uncertain parameters of the model. Using the definition 

of parameter estimation problem, the analysis step in ES can be defined for all 

ensemble members as: 

 𝐦𝑗
𝑎 = 𝐦𝑗

𝑓
+ 𝐏𝑒

𝑓
𝑯T(𝑯𝐏𝑒

𝑓
𝑯T + 𝐂D)

−1
(𝐝obs,𝑗 − 𝐝𝑗

𝑓
) (16) 

 Avoiding the use of the measurement operator, the matrices 𝐏𝑒
𝑓
𝑯T, 𝑯𝐏𝑒

𝑓
𝑯T can 

be represented in such form: 

 𝐏𝑒
𝑓
𝑯T = 𝐂MD

𝑓
 (17) 

and, 

 𝑯𝐏𝑒
𝑓
𝑯T = 𝐂DD

𝑓
 (18) 

 Then, the covariances can be estimated as: 

  

𝐂MD
𝑓

= (𝐦𝑓 − 𝐦̅𝑓)(𝐝𝑓 − 𝐝̅𝑓)
T̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
=

1

𝑁𝑒 − 1
∑(𝐦𝑗

𝑓
− 𝐦̅𝑓)(𝐝𝑗

𝑓
− 𝐝̅𝑓)

T
𝑁𝑒

𝑗=1

 (19) 

and, 

  

𝐂DD
𝑓
= (𝐝𝑓 − 𝐝̅𝑓)(𝐝𝑓 − 𝐝̅𝑓)

T̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
=

1

𝑁𝑒 − 1
∑(𝐝𝑗

𝑓
− 𝐝̅𝑓)(𝐝𝑗

𝑓
− 𝐝𝑖̅)

T
𝑁𝑒

𝑗=1

 (20) 

So, the analysis equation of ES becomes: 

 𝐦𝑗
𝑎 = 𝐦𝑗

𝑓
+ 𝐂MD

𝑓
(𝐂DD

𝑓
+ 𝐂D)

−1
(𝐝obs,𝑗 − 𝐝𝑗

𝑓
) (21) 

 Figure 2 shows the simultaneous update procedure used in the ES. The blue 

arrow represents the forward step over all time domain that contains measurements. 

The green arrow represents the single update containing all available measurements 

represented by the red arrows. The magenta arrow represents the forecast after the 

data assimilation. 
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Figure 2 – ES simultaneous update workflow. 

 
Source: Evensen (2007). 

 In the first ES application in history matching, Skjervheim et al. (2011) pointed 

out that ES has easier implementation in comparison with EnKF because of the 

parameter estimation methodology. Besides that, they concluded that computationally, 

ES is much faster than EnKF because of the lack of the simulation restarts. On the 

other hand, the single analysis without the state updates reduces the quality of the 

results, especially for strongly nonlinear systems, requiring iterative methods to 

improve the assimilation (MA et al., 2017). 

1.2.4 Ensemble Smoother with Multiple Data Assimilation (ES-MDA) 

 To improve the results keeping the problem as a parameter estimation problem 

using a smoother formulation, Emerick and Reynolds (2013) proposed the Ensemble 

Smoother with Multiple Data Assimilation (ES-MDA). The ES-MDA method assimilates 

all observed data multiple times using the same ES analysis formulation, with the 

addition of an inflation factor on the covariance for the measurement errors (𝐂D matrix). 

The objective of the inflation factor is to damp the changes in the parameters at each 

iteration. Emerick and Reynolds (2013) define the ES-MDA iterations as Gauss-

Newton steps, so the ES-MDA perform multiple smaller corrections over the model 

parameters instead of the single and larger ES update. Figure 3 shows the multiple 

data assimilation procedure in the ES-MDA. The blue arrows represent the forward 

step for all iterations. The green arrows represent the damped updates containing all 

available measurements represented by the red arrows. The magenta arrow 

represents the forecast after the data assimilation. 
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Figure 3 – ES-MDA iterative workflow (Adapted from EnKF and ES workflows from Evensen (2007)). 

 
 Because of the iterative methodology, it is convenient to change the terms 

“forecast” and “analysis” for an iteration index. So, the analysis equation in the ES-

MDA is represented as: 

 𝐦𝑗
𝑖+1 = 𝐦𝑗

𝑖 + 𝐂MD
𝑖 (𝐂DD

𝑖 + 𝛼𝑖𝐂D)
−1
(𝐝obs,𝑗

𝑖 − 𝐝𝑗
𝑖) (22) 

where 𝛼 is the inflation factor. In ES-MDA the inflation factor is used to create the 

measurements perturbations. A convenient form to create the measurement ensemble 

is: 

 𝐝obs,𝑗
𝑖 = 𝐝obs + √α𝑖𝐂D

1 2⁄ 𝐳𝑗 (23) 

where 𝐳𝑗 is a Gaussian sample with mean zero and covariance equal to one 

(𝐳𝑗~𝒩(0, 𝐈𝑁𝑑)). Chapter 2 and Chapter 3 detail the algorithm and workflow to apply the 

ES-MDA in history matching. 

 In ES-MDA the number of iterations that will be performed, as the inflation factor 

of each iteration need to be defined by the user before the start of the algorithm. 

Emerick and Reynolds (2013) defined the equivalence between the single assimilation 

(ES) and the multiple data assimilation method (ES-MDA) for the linear Gaussian case. 

The following condition must be held to keep the equivalence and guarantee the 

correct posterior distribution: 

 

∑𝛼𝑖
−1

𝑁𝑖

𝑖=1

= 1 (24) 
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where 𝑁𝑖 represent the total number of iterations (or assimilations). Analyzing Equation 

24, it is possible to conclude that infinite inflation factors combinations can be defined 

over the iterations. Since then, many practical history matching problems using ES-

MDA were performed using the same inflation factor for all iterations ([𝛼1, … , 𝛼𝑁𝑖] =

𝑁𝑖). Some examples are: Emerick (2018), Ranazzi and Sampaio (2018), Silva et al. 

(2018), Soares, Maschio and Schiozer (2018). 

 An important question that need to be commented is the fact if the results 

obtained after the ES-MDA application are not desirable, it is necessary to restart the 

entire algorithm with a different number of iterations and inflation factor at each 

iteration, requiring a large computation effort and time spent. The manual selection of 

the inflation factors and the number of iterations required for the ES-MDA lead to the 

development of adaptive methodologies. The main concept of the adaptive 

methodologies is to perform the selection of both parameters automatically, 

consequently, these algorithms keep iterating until it reaches low objective function 

values. Thus, the development of adaptive methodologies has become the nowadays 

researches goal. 

1.3 Distance-based Kalman gain localization 

 In large-scale models the number of uncertain parameters is very higher than 

the number of ensemble members used in the algorithm. This can lead to a bad 

representation of the covariances in ensemble methods (the matrices 𝐂MD
𝑖  and 𝐂DD

𝑖 ), 

resulting in extreme posterior variance reduction of the uncertain parameters (this 

reduction is also called as “Ensemble Collapse”). One way to avoid these sampling 

errors is to perform a localization technique that restricts the assimilation influence 

between the uncertain parameters and data. According to Chen and Oliver (2016), the 

localization of the Kalman gain matrix have become the state-of-art for history 

matching applications. 

 The application of Kalman gain localization consists in use a localization matrix 

to weight the Kalman gain matrix, using the Schur (element-wise) product. So, the 

Analysis equation using the Kalman gain localization can be represented as: 

 𝐦𝑗
𝑖+1 = 𝐦𝑗

𝑖 + 𝝆 ∘ [𝐂MD
𝑖 (𝐂DD

𝑖 + 𝛼𝑖𝐂D)
−1
] (𝐝obs,𝑗

𝑖 − 𝐝𝑗
𝑖) (25) 
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where 𝝆 represents the localization matrix and ∘ denotes the Schur product. So, it is 

clear to describe the localization matrix as the weighting between each pair parameter-

data: 

 

𝝆 =

[
 
 
 
 
𝜌m1,d1 𝜌m1,d2 ⋯ 𝜌m1,d𝑁𝑑

𝜌m2,d1 𝜌m2,d2 𝜌m2,d𝑁𝑑

⋮ ⋱ ⋮
𝜌m𝑁𝑚 ,d1

𝜌m𝑁𝑚 ,d2
⋯ 𝜌m𝑁𝑚 ,d𝑁𝑑]

 
 
 
 

 (26) 

 The main concept of the distance-based localization is to restrict the 

assimilation, introducing weights based on the distance between each parameter and 

data through a correlation function. One widely used correlation function is the Gaspari 

and Cohn correlation (GASPARI; COHN, 1999), that calculates the weight based on 

the Euclidian distance between the parameter and data and a critical length: 

𝜌(𝑧) =  

{
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 (27) 

where 𝑧 is the Euclidian distance and 𝐿 represents the critical length. Another example 

of correlation function is the Furrer and Bengtsson correlation (FURRER; 

BENGTSSON, 2007). In this correlation, the weights are determined as function of a 

covariance function and the ensemble size, in such a way that the larger the ensemble, 

larger the influence of the measurements (CHEN; OLIVER, 2016): 

 
𝜌(𝑧) =

1

1 + [1 + 𝑓(0)2 𝑓(𝑧)2⁄ ]/𝑁𝑒
 (28) 

where 𝑓 represents a covariance function. Some examples of covariance functions 

that can be used are spherical (for localization purposes, 𝑏 is set equal to one to 

maintain the weights between 0 and 1, Figure 4 shows the shape of both covariance 

functions): 

 

𝑓𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙(𝑧) = {
𝑏 (1 −

3

2

|𝑧|

𝐿
+
1

2

|𝑧|3

𝐿3
) , 0 ≤ 𝑧 ≤ 𝐿

0, 𝐿 < 𝑧

 (29) 

and Gaussian: 
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𝑓𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑧) = 𝑏. exp (−

|𝑧|2

𝐿
) (30) 

Figure 4 – Shape of spherical and Gaussian covariance functions. 

 
 Chen and Oliver (2016) investigated both correlations functions mentioned 

above. Figure 5 shows the shape of both correlations as function of the Euclidian 

distance for a critical length equal to 10. In Furrer and Bengtsson correlation, the black 

dashed lines represent ensemble size of 20, blue solid lines represent ensemble size 

of 100 and red dash-dotted lines represent ensemble size of 1000. 

Figure 5 – (a) Gaspari and Cohn, (b) Furrer and Bengtsson with Spherical covariance function, (c) 
Furrer and Bengtsson with Gaussian covariance function.  

 
Source: Chen and Oliver (2016). 

1.4 Dissertation overview 

 This dissertation consists of four chapters that are related to each other through 

the application of the adaptive ES-MDA methodology in the benchmark UNISIM-I-H: a 

large-scale synthetic reservoir simulation model, based on a Brazilian real field. 

 Chapter 2 presents the ensemble size investigation in the adaptive ES-MDA. 

The fact that the number of model realizations have major influences in the uncertainty 
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assessment in ensemble-based methods is one well-known role in the history 

matching community. However, we did not find anything about this influence in 

adaptive methodologies. In this chapter, we presented the algorithm of the adaptive 

ES-MDA proposed by Emerick (2016) and some information about other adaptive 

variants developed. Then, the investigation was made varying the ensemble size (from 

100 to 500) with the other parameters fixed. As expected, the larger ensembles 

presented better variance of the posterior models. However, the ensemble size does 

not showed influences on the number of iterations and the inflation factor selection. 

The full text from Chapter 2 has been submitted in the Journal of the Brazilian Society 

of Mechanical Sciences and Engineering. 

 Chapter 3 examines the influence of the Kalman gain localization in the adaptive 

ES-MDA. Motivated by Chen and Oliver (2016), that pointed out that all localization 

methods gave equivalent results when it is applied with iterative forms of ES, we bring 

up the following question: is there any influence when the localization is applied with 

adaptive forms of ES? In Chapter 3, we provided a robust description of the adaptive 

ES-MDA proposed by Emerick (2016), including the ensemble representation and the 

subspace inversion procedure. We performed this combining the work of Emerick 

(2016) and some valuable information from Evensen (2004), providing useful 

information for the methodology implementation. The localization was analyzed 

applying the Gaspari and Cohn correlation changing the critical length. The critical 

length showed influences on the number of iterations required to the algorithm 

completion, as can be seen when the lowest critical length in the study (L = 1000 m) 

resulted in a high number of iterations (that greatly increases the total computational 

time) to complete the algorithm, and in addition presenting worse data matchings. The 

full text from Chapter 3 was published as a full manuscript by the Journal of Petroleum 

Science and Engineering. 
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CHAPTER 2 - ENSEMBLE SIZE INVESTIGATION IN ADAPTIVE ES-MDA 

RESERVOIR HISTORY MATCHING 

Abstract 

 In this work, we study the ensemble size influence on an adaptive ensemble-

based methodology for history matching of petroleum reservoirs. The assimilation 

scheme used is an adaptive Ensemble Smoother with Multiple Data Assimilation (ES-

MDA) in which both the total number of assimilations and the inflation factor of each 

iteration are defined automatically by the algorithm. This fact leads to the assumption 

that the predefined algorithm parameters may have influence in the total number of 

assimilations and the inflation factors. One main parameter that can be investigated is 

the number of ensemble members used in the assimilation, also called ensemble size. 

The ensemble size influence was analyzed by applying the adaptive ES-MDA in a 

synthetic large-scale reservoir model. As result of the investigation, the ensemble size 

showed influence on the reduction of the uncertainty of the posterior models, but it did 

not show any influence on the total number of assimilations and on the inflation factor 

selection. 

2.1 Introduction 

 History matching is the data assimilation process that modifies the uncertain 

parameters of a simulation reservoir model. The objective is to obtain a simulation 

response equivalent to the available production data, improving the simulation model 

reliability and, consequently, providing a better forecast of the future performance of 

the reservoir. Aanonsen et al. (2009), Oliver and Chen (2011) and Rwechungura, 

Dadashpour and Kleppe (2011) review the techniques and the recent advances in the 

history matching, most of them associated with the application of the Ensemble 

Kalman Filter (EnKF). The EnKF is a Monte Carlo sequential assimilation method 

developed by Evensen (1994, 2003), where an ensemble of model realizations is used 

to represent the uncertainty. This ensemble is integrated forward in time (called the 

forward step), and the uncertain parameters and state variables (e.g. pressure and 

saturation) are “corrected” recursively whenever measurements are available in a 

parameter-state estimation problem (called the analysis or assimilation step) 

(EVENSEN, 2003). There are several EnKF applications in history matching (e.g., 
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Haugen et al. (2008), Zhang and Oliver (2011), Heidari et al. (2013) and Shuai et al. 

(2016)), however its necessity to update the state in each analysis step can lead to a 

high computational effort and statistical inconsistencies between the parameter and 

state (THULIN et al., 2007, 2011; WANG; LI; REYNOLDS, 2010). Due to this, 

techniques based on the Ensemble Smoother (ES), developed by van Leeuwen and 

Evensen (1996) have become the state-of-art in history matching. In smoother 

techniques, all available data are assimilated simultaneously in a single step, avoiding 

the state updates during the assimilation (being a parameter estimation problem). For 

nonlinear problems, the single ES update is not enough to provide satisfactory 

matchings, requiring iterative methods to improve the assimilation (MA et al., 2017). 

An iterative method that has become popular is the Ensemble Smoother with Multiple 

Data Assimilation (ES-MDA), developed by Emerick and Reynolds (2013). The ES-

MDA is an iterative assimilation scheme that uses the same ES formulation, 

assimilating the same data multiple times (in multiple assimilation steps, or iterations) 

with the addition of an inflation factor in order to damp each iteration. There are several 

ES-MDA applications in large-scale reservoirs history matching, e.g., Maucec et al. 

(2016), Breslavich, Sarkisov and Marakova (2017), Emerick (2016), and Morosov and 

Schiozer (2017). The necessity of define the number of iterations and the inflation 

factors before the assimilation process is one of the main drawbacks of the ES-MDA 

in your standard form: it is necessary restart the entire process if the results quality is 

not desirable after the end of the algorithm. Moreover, some works conclude that the 

correct selection of the inflation factors can improve the assimilation process (LE; 

EMERICK; REYNOLDS, 2016; RAFIEE; REYNOLDS, 2017). Evensen (2018) 

concludes that this improvement due the inflation factor selection could be obtained 

when a low number of iterations in the ES-MDA is used. The development of adaptive 

methodologies, when the number of iterations and the inflation factors are defined 

automatically, has become the nowadays researches goal. Some adaptive algorithms 

based on the ES-MDA were developed. Iglesias (2015) proposed a derivative-free 

iterative regularizing Ensemble Smoother (IR-ES). Le, Emerick and Reynolds (2016) 

proposed two adaptive variants of ES-MDA: one with a heuristical restricted step (ES-

MDA-RS), and another with a regularizing Levenberg-Marquardt scheme (ES-MDA-

RLM). It is important to point out that both IR-ES and ES-MDA-RLM are based on the 

discrepancy principle for the choice of the inflation factors (or the step length). Rafiee 

and Reynolds (2017) proposed a procedure to choose the inflation factors within a 
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predetermined number of iterations, where the inflation factors decrease geometrically 

with iteration number (ES-MDA-GEO). The selection of the number of iterations before 

the assimilation can be an advantage when the computational effort is limited, but this 

allow to a suboptimal selection of the number of iterations. Emerick (2016) proposed 

an adaptive variant of the ES-MDA (adapt. ES-MDA) where the inflation factor of each 

iteration is related with a normalized objective function that measures the discrepancy 

between the simulator response and the data, defining only a maximum inflation factor 

allowed in the iterations. This algorithm keeps iterating until it reaches low 

discrepancies (being the number of iterations and the inflation factor defined 

automatically). 

In this work, we will investigate the influence of the ensemble size in the adaptive 

ES-MDA proposed by Emerick (2016) when it is applied in a large-scale reservoir 

simulation model. We chose this methodology because either the number of iterations 

and the inflation factors are defined automatically. The case study selected to check 

the ensemble influence is the benchmark UNISIM-I, since some works already 

performed history matching in UNISIM-I using the ES-MDA (e.g., Morosov and 

Schiozer (2017), Silva et al. (2017), Soares, Maschio and Schiozer (2018), Emerick 

(2018), Ranazzi and Sampaio (2018)). In Ranazzi and Sampaio (2019), the influence 

of the localization was verified in the adaptive scheme, where lower correlation lengths 

resulted in more required iterations to perform the entire algorithm. In Section 2.2, we 

define the history matching problem and the adaptive ES-MDA methodology, in 

Section 2.3 we describe the benchmark UNISIM-I and the experiments that we run to 

the discussion. Then, in Section 2.4, we present the results obtained to discuss the 

ensemble size influence in the adaptive ES-MDA. 

2.2 Methodology 

 The ensemble size investigation was performed by running the adaptive ES-

MDA methodology for different ensemble sizes, and the comparison will be made 

through several approaches. The algorithm was implemented in MATLAB®, combining 

the iterative forward steps (IMEX simulator of CMG ®) and the analysis steps (adaptive 

ES-MDA). The following sections will introduce the adaptive ES-MDA methodology for 

history matching (EMERICK, 2016) and the objective functions used to evaluate the 

matching in terms of data and model parameters. Figure 6 shows the methodology 
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workflow used in this study, that consists in the following steps: history matching, 

analysis of the posterior models and analysis of the forecast production period. 

Figure 6 – Methodology workflow. 

 

2.2.1 Adaptive ES-MDA in the History Matching 

In ensemble-based methods, each member 𝑗 is used to represent the ensemble 

with size 𝑁𝑒. The uncertain reservoir parameters can be composed of permeabilities 

in different directions, porosity, net-to-gross ratio, fluid contacts, fault transmissibility 

multipliers, etc. (CHEN; OLIVER, 2010). In the history matching problem, it is 

convenient to collect all the 𝑁𝑚 uncertain parameters into a vector 𝐦: 

 𝐦𝑗 = [m1,𝑗, m2,𝑗, … ,m𝑁𝑚,𝑗]
T
∈ ℜ𝑁𝑚 . (31) 

Also, all the 𝑁𝑑 the simulator response and the observed data that will be matched 

(e.g., production and injection rates, bottom-hole pressure in different time periods, 

etc.) can be collected into the vectors 𝐝 and 𝐝obs, respectively: 

 𝐝𝑗 = [d1,𝑗, d2,𝑗, … , d𝑁𝑑,𝑗]
T
∈ ℜ𝑁𝑑 , (32) 

and, 

 
𝐝obs𝑗 = [dobs1,𝑗 , dobs2,𝑗 , … , dobs𝑁𝑑,𝑗

]
T

∈ ℜ𝑁𝑑 (33) 

The forward step relates the uncertain parameters vector with the simulator 

response: 

 𝐝𝑗 = 𝒈(𝐦𝑗) (34) 

where 𝑔 is the forward operator (in the history matching, the reservoir flow simulator). 

The main objective of the history matching problem is to reduce the discrepancy 
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between the simulated and observed (measured) data. This discrepancy can be 

represented through an objective function, one well-known objective function is 

(EMERICK, 2016; LE; EMERICK; REYNOLDS, 2016): 

 
𝑂𝑁𝑑,𝑗 =

1

2𝑁𝑑
(𝐝𝑗

𝑖 − 𝐝obs)
T
𝐂D
−1(𝐝𝑗

𝑖 − 𝐝obs), (35) 

where 𝐂D is the covariance of measurement errors. If the data are uncorrelated, 𝐂D is 

assumed to be diagonal (EMERICK, 2016) (where 𝜎 represents the standard deviation 

of each measurement): 

 

𝐂D =

[
 
 
 
 
𝜎1
2 0 ⋯ 0

0 𝜎2
2 ⋮

⋮ ⋱ 0
0 ⋯ 0 𝜎𝑁𝑑

2
]
 
 
 
 

∈ ℜ𝑁𝑑×𝑁𝑑 (36) 

The analysis equation for each ensemble member 𝑗 and iteration 𝑖 in the ES-

MDA can be expressed as: 

 𝐦𝑗
𝑖+1 = 𝐦𝑗

𝑖 + 𝐂MD
𝑖 (𝐂DD

𝑖 + 𝛼𝑖𝐂D)
−1
(𝐝obs,𝑗

𝑖 − 𝐝𝑗
𝑖), (37) 

where 𝐂MD is the cross-covariance between the parameters and the simulated data, 

𝐂DD is the auto-covariance of the simulated data, 𝛼𝑖 is the inflation factor (or step 

length) for iteration 𝑖 and 𝐝obs,𝑗 is the perturbed measured data. In the ES-MDA 

methodology, the measurements must be treated as random variables to maintain the 

correct variance after the analysis (BURGERS; VAN LEEUWEN; EVENSEN, 1998; 

CHEN; OLIVER, 2010), creating the ensemble of observations 𝐝obs,𝑗
𝑖 , adding to the 

original measurements a Gaussian white noise with covariance α𝒊𝐂D: 

 𝐝obs,𝑗
𝑖 ∼ 𝒩(𝐝obs, α𝒊𝐂D). (38) 

Also, in ES-MDA the covariances are estimated around the ensemble mean: 

 

𝐂MD
𝑖 =

1

𝑁𝑒 − 1
∑(𝐦𝑗

𝑖 − 𝐦̅𝑖)(𝐝𝑗
𝑖 − 𝐝𝑖̅)

T

𝑁𝑒

𝑗=1

∈ ℜ𝑁𝑚×𝑁𝑑 , (39) 

and 

 

𝐂DD
𝑖 =

1

𝑁𝑒 − 1
∑(𝐝𝑗

𝑖 − 𝐝𝑖̅)(𝐝𝑗
𝑖 − 𝐝𝑖̅)

T

𝑁𝑒

𝑗=1

∈ ℜ𝑁𝑑×𝑁𝑑 , (40) 
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where the overbars denote the ensemble mean. 

2.2.1.1 Inflation Factors Selection in the Adaptive ES-MDA 

 Emerick and Reynolds (2013) demonstrated that ES-MDA is equivalent to ES 

(for the linear-gaussian case) only if the following condition holds: 

 

∑𝛼𝑖
−1

𝑁𝑖

𝑖=1

= 1. (41) 

 A common way to select the inflation factor is set 𝛼𝑖 = 𝑁𝑖 for all iterations (e.g., 

Silva et al. (2017), Soares, Maschio and Schiozer (2018), Emerick (2018)). Making the 

assumption that one ES-MDA iteration is equivalent with one Gauss-Newton iteration, 

it is possible to conclude that lower lengths at initial steps (higher inflation factors at 

early iterations) can improve the assimilation process, avoiding overcorrections (LE; 

EMERICK; REYNOLDS, 2016). On the other hand, the discrepancy between the 

simulator response and the observed data decreases during the history matching 

process, so, Emerick (2016) proposed an adaptive ES-MDA where the user only 

defines a maximum inflation factor 𝛼max, a maximum number of iterations 𝑖max and a 

heuristical factor that relates the inflation factor of each iteration and the discrepancy 

measured through an objective function (in this case, the averaged objective function 

𝑂̅𝑁𝑑
𝑖 ). The inflation factor of each iteration is computed as: 

 𝛼𝑖 = min{𝑎𝑂̅𝑁𝑑
𝑖 , 𝛼max}, (42) 

where 𝑎 (𝑎 > 0) is the heuristical factor that relates the step length and the discrepancy. 

The averaged objective function can be defined as: 

 

𝑂̅𝑁𝑑
𝑖 =

1

𝑁𝑒
∑𝑂𝑁𝑑,𝑗

𝑖 .

𝑁𝑒

𝑗=1

 (43) 

To hold the condition of Eq. 41, after the definition of the iteration length size 

(before the analysis at each iteration) the following conditions must be checked: 

 

∑𝛼𝑖
−1

𝑁𝑖

𝑖=1

> (1 − 𝛼max
−1 ) or 𝑖 = 𝑖max. (44) 
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If any condition is violated, a new inflation factor must be calculated using Eq. 

41, then, the last analysis step is performed. The algorithm of the adapt. ES-MDA is 

as follows: 

For each iteration: 

1. Run the forward model for every ensemble member from time zero 

𝐝𝑗
𝑖 = 𝑔(𝐦𝑗

𝑖). 

2. Compute:  

𝑂̅𝑁𝑑
𝑖 = (1 𝑁𝑒⁄ )∑ (1 2𝑁𝑑)⁄ (𝐝𝑗

𝑖 − 𝐝obs)
T
𝐂D
−1(𝐝𝑗

𝑖 − 𝐝obs)
𝑁𝑒
𝑗=1 . 

3. Define step length: 

 𝛼𝑖 = min{𝑎𝑂̅𝑁𝑑
𝑖 , 𝛼max}. 

4. Check condition: 

 ∑ 𝛼𝑖
−1𝑁𝑖

𝑖=1 > (1 − 𝛼max
−1 ) or 𝑖 = 𝑖max. 

5. If any condition is violated: 

• Calculate a new inflation factor for Eq. 41 setting equal to one: 

 ∑ 𝛼𝑖
−1𝑁𝑖

𝑖=1 = 1. 

• Perform last iteration (Step 7 and Step 8); then, terminate the 

algorithm. 

6. end (if) 

7. Perturb measurements: 

 𝒅obs,𝑗
𝑖 ∼ 𝒩(𝒅obs, α𝒊𝐂D). 

8. Compute analysis step for every ensemble member: 

 𝐦𝑗
𝑖+1 = 𝐦𝑗

𝑖 + 𝐂MD
𝑖 (𝐂DD

𝑖 + 𝛼𝑖𝐂D)
−1
(𝐝obs,𝑗

𝑖 − 𝐝𝑗
𝑖). 

9. Proceed to next iteration: 

 𝑖 = 𝑖 + 1. 

end (for). 

2.2.1.2 Localization 

 Several authors report the need to use some localization technique when the 

assimilation is performed in large-scale models and using a limited ensemble size (e.g. 

Chen and Oliver (2010, 2016), Emerick (2016, 2018), Silva et al. (2017), Ranazzi and 

Sampaio (2018), Soares, Maschio and Schiozer (2018)). One widely method used in 
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the history matching apply the localization directly on the Kalman Gain matrix (𝑲 =

𝐂MD
𝑖 (𝐂DD

𝑖 + 𝛼𝑖𝐂D)
−1

) using the Schur (elementwise) product, thus, the analysis 

equation becomes: 

 𝒎𝑗
𝑖+1 = 𝒎𝑗

𝑖 + 𝝆 ∘ [𝐂MD
𝑖 (𝐂DD

𝑖 + 𝛼𝑖𝐂D)
−1
] (𝒅obs,𝑗

𝑖 − 𝒅𝑗
𝑖), (45) 

where 𝝆 is the localization matrix and ∘ represent the Schur product. 

2.2.2 Posterior Data Matching 

 The discrepancy between the simulated and observed data is measured using 

the same objective function of the inflation factor definition (Eq. 35), that is, the norm 

between the observed and simulated production data weighted by the covariance of 

the measurement errors inverse. 

2.2.3 Posterior Updated Models 

 The impact of the ensemble size in the uncertainty reduction also can be 

analyzed through the normalized variance (NV) and sum of normalized variance 

(SNV), that is, the relation between the posterior and prior model parameters ensemble 

variance (OLIVER; REYNOLDS; LIU, 2008; SOARES; MASCHIO; SCHIOZER, 2018; 

EMERICK, 2018). The normalized variance of a parameter can be determined as: 

 
NV =

𝜎𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2

𝜎𝑝𝑟𝑖𝑜𝑟
2 , (46) 

and the sum of normalized variance of a parameter set 𝑝 containing a total of 𝑠 

parameters can be defined as: 

 

SNV𝑝 =

∑ (𝜎𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟,𝑠
2 𝜎𝑝𝑟𝑖𝑜𝑟,𝑠

2⁄ )
𝑁𝑝

𝑠=1

𝑁𝑝
, 

(47) 

2.3 Case Study 

 To evaluate the ensemble size influence on the adaptive ES-MDA history 

matching, we applied the methodology in the benchmark UNISIM-I-H for history 
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matching applications (MASCHIO et al., 2015). Avansi and Schiozer (2015) detail the 

construction of the benchmark. The black-oil reservoir model has 38466 active cells 

with one main fault that split the reservoir into two regions. The production history is 

composed of 11 years (4018 days) of 14 producer wells and 11 injector wells (oil and 

water production rate, gas-oil ratio, water injection rate and bottom-hole pressure). 

Figure 7 shows the reservoir model with the two sectors and the wells position.  

Figure 7 - Benchmark UNISIM-I-H. 

 
 There are about two hundred thousand uncertain parameters in the benchmark. 

The uncertain parameters are porosity, net-to-gross ratio, log-permeability in the three 

orthogonal directions (the log-permeability is used instead of permeability in order to 

represent the uncertainty as normal distribution), water-oil contact at the east sector, 

rock compressibility, vertical permeability multiplier; Corey exponent and maximum 

water relative permeability used to model the water relative permeability curve using 

Corey function. Table 1 shows the measurement errors used to create the covariance 

of the measurement errors matrix (𝐂D) in this case study. An important thing to point 

out is, if there is any zero value in a measurement type (like water production rate, for 

example), it is necessary to define a minimum error to keep the data as random 

variable. 

Table 1 - Measurement errors. 

Measurement Type Measurement error 

Oil production rate 10% (minimum of 1 m³/d) 
Water production rate 15% (minimum of 1 m³/d min) 
Gas-oil Ratio 20% (minimum of 10 m³/d min) 
Water injection rate 05% (minimum of 1 m³/d min) 
Bottom-hole pressure 5 kgf/cm² 
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 The localization matrix was built by performing distance-based localization using 

the well-known Gaspari and Cohn correlation (GASPARI; COHN, 1999). The influence 

area was defined as a circle (equal in x and y directions) with critical length equal to 

2000 meters for all wells and data types. The iteration parameters used in this study 

were 𝛼max = 1000, 𝑎 = 0.25 and 𝑖max = 15, the influence was investigated by varying 

the ensemble size with minimum size equal to 100 members and maximum size equal 

to 500 members, with an increment equal to 100 members (𝑁𝑒 = [100, 200,… , 500]). 

The initial ensemble was created combining the information provided in the benchmark 

data (prior realizations of the petrophysical properties and probability density functions 

of the scalar properties). Table 2 shows the benchmark wells and field controls used 

during the 30 years (10957 days) forecast production period. 

Table 2 – Forecast period controls. 

 Control Value Action 

Producer wells controls 

Oil production rate 
max 2000 m3/d - 

min 20 m3/d Shutin 
Bottom-hole pressure min 190 kgf/cm2 - 

Watercut max 0.9 Shutin 
Gas-oil rate max 200 Shutin 

Injector wells controls 
Water injection rate max 5000 m3/d - 

Bottom-hole pressure max 350 kgf/cm2 - 

Field controls 

Liquid production rate max 15500 m3/d - 
Water production rate max 13950 m3/d - 

Oil production rate max 15500 m3/d - 
Water injection rate max 21700 m3/d - 

2.4 Results and Discussion 

 Analyzing the discrepancy between the simulated and measured data through 

the averaged normalized objective function (𝑂̅𝑁𝑑) and the standard deviation of the 

normalized objective function (std 𝑂𝑁𝑑,𝑗) of the prior and posterior ensembles (Table 

3), it is possible to verify a similar and significant reduction in the objective function 

values for all cases. This similarity also can be verified by analyzing the evolution of 

the iterations of the normalized objective function 𝑂̅𝑁𝑑
𝑖  (Figure 8) and the inflation factor 

𝛼𝑖 (Figure 9) for different ensemble sizes, where both parameters presented similar 

behavior over the iterations regardless of the ensemble size. In addition, in Table 3 it 

is possible to verify that all cases required a similar number of iterations to complete 

the algorithm. This shows that the ensemble size has no influence on the number of 

iterations and on the selected inflation factors required to perform the adaptive 

methodology. 
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Table 3 - Prior and posterior objective function values (mean ± standard deviation), required number of 
iterations and the total required simulation runs (including the posterior ensemble) for different 

ensemble sizes. 
 𝑵𝒆 = 𝟏𝟎𝟎 𝑵𝒆 = 𝟐𝟎𝟎 𝑵𝒆 = 𝟑𝟎𝟎 𝑵𝒆 = 𝟒𝟎𝟎 𝑵𝒆 = 𝟓𝟎𝟎 

Prior 984.53 ± 607.19 977.61 ± 609.33 964.30 ± 596.98 998.49 ± 702.21 977.27 ± 621.22 

Posterior 5.18 ± 2.64 4.12 ± 1.33 3.17 ± 2.05 4.14 ± 3.49 4.32 ± 3.43 

𝑵𝒊 8 8 9 8 8 

Simul. Runs 900 1800 3000 3600 4500 

Figure 8 - Averaged objective function evolution over the iterations for different ensemble sizes. 

 

Figure 9 - Inflation factor evolution over the iterations for different ensemble sizes. 

 
 The matching between the observed and simulated data can also be verified by 

analyzing the well time series before and after the application of the adaptive ES-MDA 

(Figure 10 and Figure 11) for the case with ensemble size equal to 300. In the time 

series plots, the gray lines represent the prior ensemble, black lines represent the 

posterior ensemble and the red dots represent the observed data. Figure 10 shows the 

oil production rate (Figure 10 a,b), water rate (Figure 10 c,d) and bottom-hole pressure 

(BHP) (Figure 10 e,f) of two producer wells (NA3D and PROD023A). Figure 11 shows 

the water injection rate (Figure 11 a,b) and bottom-hole pressure (BHP) (Figure 11 c,d) 
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of two injector wells (INJ010 and INJ022). It is possible to verify an improvement at the 

posterior ensemble results for all wells and parameters analyzed due the adaptive 

methodology. 

Figure 10 - Well time series of (a) NA3D Oil Rate, (b) PROD023A Oil Rate, (c) NA3D Water Rate, (d) 
PROD023A Water Rate, (e) NA3D Bottom-hole Pressure, (f) PROD023A Bottom-hole Pressure.  

 

(a) (b) 

 

(c) (d) 

 

(e) (f) 
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Figure 11 - Time series of injector well INJ010 and injector well INJ022. 

 

(a) (b) 

 

(c) (d) 

 The update of the uncertain parameters after the matching is an important 

feature to be analyzed in order to preserve the prior reservoir characteristics as much 

as possible. Figure 12 shows the ensemble mean of the log-permeability in the i-

direction (mean ln(𝑘𝑥)) for the prior and posterior models. It is possible to verify lower 

roughness and lesser extreme values (minimum and maximum ln(𝑘𝑥) values) as the 

ensemble size increases. 

Figure 12 - First layer mean log-permeability in i-direction a before (prior) and after (posterior) the 
history matching for ensemble size equal to (b) 100, (c) 300, (d) 500. 

 

(a) (b) 
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(c) (d) 

 The ensemble size also influences the posterior log-permeability standard 

deviation in i-direction (std ln(𝑘𝑥)). The impact of the ensemble size in the uncertainty 

reduction also can be analyzed through the sum of normalized variance (SNV), that is, 

the relation between the posterior and prior model parameters ensemble variance 

(OLIVER; REYNOLDS; LIU, 2008; SOARES; MASCHIO; SCHIOZER, 2018; 

EMERICK, 2018). Table 4 shows the SNV of different uncertain model parameters for 

different ensemble sizes after the matching. Analyzing Figure 13 and Table 4, it is 

possible to verify smaller uncertainty reduction in the posterior ensemble as the 

ensemble size increases. It can be explained by the fact that analysis is contained in 

the space spanned by the initial ensemble (EVENSEN, 2007). Thus, the addition of 

more ensemble members increases the space spanned by the ensemble, improving 

the representation of the covariances 𝐂MD and 𝐂DD (that are estimated around the 

ensemble mean). The errors due the limited ensemble size will decrease proportional 

to 1 √𝑁𝑒⁄  (EVENSEN, 2003). 

Figure 13 - First layer log-permeability standard deviation in i-direction a before (prior) and after 
(posterior) the history matching for ensemble size equal to (b) 100, (c) 300, (d) 500 

 

(a) (b) 
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(c) (d) 

Table 4 - Sum of normalized variance for different ensemble sizes. 

Parameter 𝑵𝒆 = 𝟏𝟎𝟎 𝑵𝒆 = 𝟐𝟎𝟎 𝑵𝒆 = 𝟑𝟎𝟎 𝑵𝒆 = 𝟒𝟎𝟎 𝑵𝒆 = 𝟓𝟎𝟎 

Porosity 0.3166 0.4308 0.5116 0.5675 0.6120 

Net-to-gross 0.3528 0.4836 0.5680 0.6329 0.6821 

Log-permeability (i) 0.3205 0.4340 0.5136 0.5712 0.6137 

Log-permeability (j) 0.3208 0.4344 0.5140 0.5715 0.6139 

Log-permeability (k) 0.2845 0.3924 0.4668 0.5249 0.5644 

Water-oil contact 0.4852 0.5363 0.5488 0.6249 0.6858 

Rock compressibility 0.0007 0.0104 0.0264 0.0381 0.0570 

Vert. Perm. Multiplier 0.0015 0.0103 0.0226 0.0302 0.0448 

Max. water Rel. Perm. 0.0011 0.0058 0.0202 0.0260 0.0422 

Corey exponent 0.0011 0.0038 0.0129 0.0184 0.0242 

 Analyzing the forecast production period of 30 years, it is possible to verify the 

ensemble influence in the forecast period. Figure 14 shows the Field Cumulative Oil 

Production for different ensemble sizes, where the blue lines represent the posterior 

ensemble response, the red line represents the reference case (UNISIM-I-R) 

production response and the black vertical line represents the start of the forecast 

period (11 years). It is possible to verify that smaller ensemble sizes (Figure 14 a for 

𝑁𝑒 = 100 and Figure 14 b for 𝑁𝑒 = 300) presented worse results in comparison to the 

higher ensemble size (Figure 14 c for 𝑁𝑒 = 500). 



46 
 

Figure 14 - Forecast period field cumulative oil production for ensemble size equal to (a) 100, (b) 300, 
(c) 500. 

 
(a) (b) 

 
(c) 

2.5 Conclusion 

 This work investigated the ensemble size influence on the use of an adaptive 

ES-MDA for history matching, where the algorithm defines both the number of 

iterations and the inflation factors for each iteration. From the obtained results, the 

objective function and the inflation factor evolution over the iterations presented similar 

behavior, regardless of the ensemble size. Thus, it is possible to conclude that 

ensemble size definition did not influence in the required number of iterations to 

perform the algorithm or in the inflation factor selection in the adaptive scheme. The 

ensemble size mainly affects the update of the uncertain model parameters. It is 

possible to verify that smaller ensemble sizes (with lower computational cost required 

to perform the algorithm) resulted in high roughness and extreme updated parameters 

in the ensemble mean values and a higher uncertainty reduction in the posterior 

ensemble (analyzing both standard deviation and the SNV). The higher variance 

reduction may result in a poor uncertainty assessment of the production forecast 
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period, as can be seen in the analysis of the forecast production period. It is important 

to point out the fact that the ensemble size impact in the posterior ensemble was 

already verified in the literature (e.g. Soares, Maschio and Schiozer (2018)). 

 Regardless the updated models and the uncertainty assessment, the data 

matching objective function presented a good reduction for all ensemble sizes. This 

shows the ability of the adaptive ES-MDA to keep iterating until the algorithm reaches 

good data matchings, avoiding the explicit selection of the inflation factors. Thus, it is 

possible to define the importance of the correct selection of the ensemble size 

according to the available computational power, being an important feature the 

necessity of establish a balance between a good uncertainty assessment and the 

desired computation effort required to perform the algorithm. 
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CHAPTER 3 - INFLUENCE OF THE KALMAN GAIN LOCALIZATION IN ADAPTIVE 

ENSEMBLE SMOOTHER HISTORY MATCHING 

Abstract 

In reservoir engineering, history matching is the technique of conditioning a reservoir 

simulation model to the available production data. The reservoir properties have 

uncertainties which lead to discrepancies between the observed data and the reservoir 

simulator response, making history matching an indispensable tool in the petroleum 

industry. The standard Ensemble Smoother with Multiple Data Assimilation (ES-MDA) 

application has become popular in history matching problems. However, in the 

standard methodology, the number of iterations must be previously defined by the 

user, what makes it a determinant parameter in the ES-MDA results. One way to solve 

this problem is to perform adaptive algorithms: these algorithms keep iterating until 

they reach desirable matchings with the real data. Furthermore, to apply this method 

in large-scale reservoirs, it is necessary to use some localization technique to prevent 

spurious updates and high uncertainty reduction after the ES-MDA is applied. This 

work evaluates the influence of the distance-based Kalman Gain localization in an 

adaptive Ensemble Smoother, by applying the mentioned methodology in a large-scale 

synthetic reservoir model. The experiments showed a connection between the 

localization parameters and the number of iterations required by the adaptive 

algorithm. Moreover, the results presented significant reduction in the production data 

mismatch, regardless the localization, being the mismatch of the prior and posterior 

models an important parameter to determine the history matching quality. 

3.1 Introduction 

In the construction of a reservoir simulation model, many required properties 

have associated uncertainties due to their acquisition methods, resulting in a 

discrepancy between the simulated and observed data. The main purpose of the 

history matching process is re-evaluate the reservoir properties that have uncertainties 

in order to reproduce the behavior of observed data. With the technological advance 

of the history matching methods, an important feature of a good matching is to preserve 

the geological realism and quantify forecast uncertainty (ZHANG; OLIVER, 2011). In 

addition, history matching is generally an ill-posed inverse problem, which reinforces 
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the idea of using a method that quantifies the uncertainty, improving the reliability of 

reservoir performance prediction. 

A set of methods that have been used in the history matching are the so-called 

“Ensemble-Methods”, where an ensemble of models are used to represent the 

parameters and forecast uncertainties. Some publications discuss the efficiency and 

recent progress in history matching (AANONSEN et al., 2009; OLIVER; CHEN, 2011; 

RWECHUNGURA; DADASHPOUR; KLEPPE, 2011). A widely used method is the 

Ensemble Kalman Filter (EnKF) (EVENSEN, 1994, 2003), a sequential data 

assimilation method. This concept means that the ensemble of model parameters is 

integrated forward in time (e.g., the reservoir simulator) and that in any period where 

observed data are available, the model ensemble is updated before the integration 

continues. The first application of the EnKF in a history matching problem was 

performed by Nævdal, Mannseth and Vefring (2002), where the near-well properties 

were updated. The EnKF is being widely studied since it is a suitable method to perform 

a continuous update of the reservoir models in a parameter-state estimation problem, 

by using 4D seismic data for real-time reservoir management. Some recent works 

present advances in the application of EnKF (HEIDARI et al., 2013; SHUAI et al., 

2016), but their implementation in history matching has some practical issues. Some 

examples are the necessity to update the state variables (e.g., pressure and saturation 

of each grid block) and the simulation restarts at each assimilation step, making EnKF 

impractical for many cases. On the other hand, the Ensemble Smoother (ES) method 

(VAN LEEUWEN; EVENSEN, 1996) has gained attention recently in history matching. 

In ES, a single global update step containing all available observed data is performed 

in a parameter estimation problem. Skjervheim et al. (2011) applied for the first time 

the ES in a history matching problem, comparing its performance with EnKF. They 

concluded that, computationally, the ES is much faster than EnKF, it is easier to 

implement and provides an efficient ensemble-based method. The ES in its standard 

implementation has also some related issues, mainly due to the lack of the state 

updates at each assimilation step, presenting worse results in comparison to EnKF 

and requiring iterative methodologies to improve the ES efficiency (CHEN; OLIVER, 

2012). Since then, many iterative ensemble smoothers have been developed. Chen 

and Oliver (2012) proposed a method based on the sequential ensemble randomized 

maximum likelihood method (EnRML) (GU; OLIVER, 2007), but with all the data 

assimilated simultaneously (batch-EnRML). In EnRML, the Gauss-Newton method is 
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used to minimize the difference between the simulated and observed data, using an 

average sensitivity matrix estimated from the ensemble. This method showed a 

significant reduction in the data mismatch, but the calculation of the sensitivity matrix 

is often unstable, resulting in a high number of iterations, sometimes with a 

computational cost greater than EnKF. Chen and Oliver (2013, 2014), proposed a 

variant of the EnRML using a Levenberg-Marquardt regularization scheme (LM-

EnRML) in order to avoid the explicit calculation of the sensitivity matrix. Emerick and 

Reynolds (2013) define ES assimilation scheme as a method equivalent to a single 

Gauss-Newton iteration. Due to this, they propose a multiple data assimilation (MDA) 

method with the same formula of standard ES, but assimilating the same data multiple 

times. The ES-MDA uses an inflated covariance of the measurements errors to damp 

the changes in the model, in order to perform smaller corrections throughout each 

iteration. ES-MDA has been used in practical applications ever since (MAUCEC et al., 

2016; BRESLAVICH et al., 2017). One of the disadvantages of the ES-MDA method 

is the need to determine, before the start of the algorithm, the number of iterations and 

the inflation factor of each iteration. The selection of these parameters must be 

correctly made in order to avoid overcorrections in the model parameters at each 

update step. These overcorrections can occur due to low damping in early Gauss-

Newton iterations. Evensen (2018) showed that for a low number of iterations, better 

results can be achieved according to the selection of the inflation factor values at each 

iteration step. Le, Emerick and Reynolds (2016) presented an adaptive ES-MDA using 

the regularizing Levenberg-Marquardt algorithm (IGLESIAS; DAWSON, 2013) to 

automatically choose the inflation factors. These adaptive methodologies keep the 

algorithm iterating until it reaches low discrepancies in the data matching. This work 

compared the proposed methodology (ES-MDA-RLM) with the LM-EnRML, applying 

both in the three-phase 3D reservoir model called PUNQS3, showing better results 

with the less computational effort for ES-MDA-RLM application, but resulting in too 

high inflation factors at early iterations. These high early inflation factors may lead to 

an unfeasible number of iterations. In this context, Emerick (2016) proposed a 

simplified adaptive ES-MDA which the inflation factor is determined by a relationship 

with a normalized objective function that represents the discrepancy between the 

simulated and measured data. 

In practical applications, the number of model parameters (around hundreds of 

thousands) is considerably higher than the ensemble size used in the assimilation 



52 
 

method. This fact may lead to the loss of variance of the model parameters ensemble 

(ensemble collapse) and a low-quality matching. One way to handle this is to apply 

some localization technique that limits the assimilation of each measurement 

according to their spatial position. There are several works that employ localization 

methods in ensemble-based assimilation techniques. Most of these works apply the 

localization by performing an element-wise multiplication (Schur product) between a 

localization matrix and the Kalman gain matrix of the assimilation scheme. Another 

localization procedure is to perform local analysis, where the analysis scheme is 

decomposed into local regions and each local analysis is performed only with the 

subset of the measurements within their respective region (EVENSEN, 2003; CHEN; 

OLIVER, 2016). Chen and Oliver (2016) analysed the Kalman gain localization and the 

Local Analysis (both localization methods) and concluded that both localization 

methods can give equivalent results if used with iterative methods (with the Local 

Analysis converging quickly when the number of data is higher in comparison to the 

ensemble size). 

The matrix used in Kalman gain localization can be built from different 

approaches. Currently, the most used in reservoir history matching are distance-based 

and streamline-based localization. In distance-based localization, a correlation 

function is employed to calculate each element of the localization matrix. Emerick and 

Reynolds (2011a, 2011b) used the Gaspari and Cohn correlation (GASPARI; COHN, 

1999) and proposed a methodology to determine the critical lengths of the correlation, 

based in the correlation lengths of the prior geological model and the drainage area of 

the wells. Silva et al. (2017) and Emerick (2018) performed a history matching where 

the critical length was defined by the authors as a circle of constant radius equal to 

2000 meters, based on their previous experiences. Soares, Maschio and Schiozer 

(2018) proposed two approaches to estimate the critical length size, one that uses the 

influence area of each well in the producer-injector pair, and another that uses 

streamlines area to trace drainage ellipses in order to estimate the critical length in the 

distance-based localization. Chen and Oliver (2010, 2014) used a correlation function 

based on the ensemble size (FURRER; BENGTSSON, 2007), where the bigger the 

ensemble size, the larger the influence area of the measurements. Watanabe and 

Datta-Gupta (2012) investigated the application of phase-streamlines to determine the 

influence area of the measurements in the Kalman gain localization, showing good 

results in reservoirs with high heterogeneity, where a simple distance-based cannot 
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represent the influence areas properly. However, streamline methodologies have a 

more difficult implementation, with the need to compute the streamline velocities along 

the reservoir model. 

The case study of this paper is the UNISIM-I benchmark. Some studies have 

already applied the ES-MDA in UNISIM-I to perform history matching. Morosov and 

Schiozer (2017) and Silva et al. (2017) performed a closed-loop reservoir management 

(CLRM) in the case study for selection of production strategy UNISIM-I-D (GASPAR et 

al., 2015) using the standard ES-MDA methodology. Soares, Maschio and Schiozer 

(2018) applied the standard ES-MDA in UNISIM-I-H, using two different methods to 

define the critical length in Gaspari and Cohn correlation. Emerick (2018) tested a 

deterministic ES-MDA (DES-MDA) in UNISIM-I-H, where the measurements 

perturbation is avoided. This work aims to evaluate the influence of the critical length 

of Gaspari and Cohn correlation in an adaptive ES-MDA (EMERICK, 2016) plus 

Kalman gain localization, applying them in a large-scale synthetic reservoir model to 

verify the impact that the localization may cause in the adaptive assimilation scheme, 

filling the gap in the literature in regard to the impact of localization in adaptive 

algorithms applications. 

3.2 Methodology 

One of the main advantages of using an ensemble of model parameters in 

history matching problem is avoiding the explicit calculation of sensitivities. The 

ensemble uses the reservoir simulator response for each member to perform the 

assimilation, independently of the forward model system of equations. This work 

combines the adaptive Ensemble Smoother proposed by Emerick (2016) and the 

distance-based Kalman gain localization. The following sections describe the adaptive 

ES-MDA, the objective function that measures the data mismatch used to obtain the 

inflation factors of the ES-MDA and the application of the Kalman gain localization. In 

the methodology, we adopt the notation from Emerick (2016). 
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3.2.1 Adaptive ES-MDA 

First, it is important to define the forward model and the inverse problem in the 

history matching. The perfect forward model, where the model errors are neglected 

(EVENSEN, 2018), can be defined as: 

 𝒅 = 𝑔(𝒎) (48) 

where the forward operator 𝑔 (in this case the reservoir simulator) relates the model 

parameters vector 𝒎𝑗  ∈   ℜ
𝑁𝑚 with the predicted data vector 𝒅𝑗  ∈  ℜ

𝑁𝑑, and, 𝑁𝑚 and 

𝑁𝑑 are the number of model parameters and measurements, respectively. The history 

matching inverse problem is to estimate the model parameters that best represent the 

behavior of the available measurements of 𝒅 (𝒅𝑜𝑏𝑠). Emerick and Reynolds (2013) 

define that ES is equivalent to a full Gauss-Newton update step. Therefore, the ES-

MDA assimilates all the measurements multiple times, using an inflated covariance in 

the data noise, relating one iteration with a smaller Gauss-Newton update step. In the 

ES-MDA analysis step, each member 𝑗 of model parameters vector ensemble is 

‘corrected’ using the following analysis equation: 

 𝒎𝑗
𝑖+1 = 𝒎𝑗

𝑖 + 𝑪𝑀𝐷
𝑖 (𝑪𝐷𝐷

𝑖 + 𝛼𝑖𝑪𝐷)
−1
(𝒅𝑜𝑏𝑠,𝑗

𝑖 − 𝒅𝑗
𝑖) (49) 

for 𝑗 = (1,… ,𝑁𝑒), where 𝑁𝑒 denotes the number of ensemble members (ensemble 

size), 𝑪𝑀𝐷
𝑖  ∈  ℜ𝑁𝑚×𝑁𝑑 is the cross-covariance between the model parameters and 

predicted data, 𝑪𝐷𝐷
𝑖  ∈  ℜ𝑁𝑑×𝑁𝑑 is the auto-covariance of the predicted data, 𝛼𝑖 is the 

inflation factor that damp the iteration 𝑖, 𝑪𝐷  ∈  ℜ
𝑁𝑑×𝑁𝑑 is the covariance of the 

measurement errors. The forward step is where each ensemble member 𝒅𝑗
𝑖 is 

estimated using the forward operator 𝒅𝑗
𝑖 = 𝑔(𝒎𝑗

𝑖) for 𝑗 = (1,… ,𝑁𝑒). The term 𝑲 is the 

so-called Kalman Gain matrix: 

 𝑲 = 𝑪𝑀𝐷
𝑖 (𝑪𝐷𝐷

𝑖 + 𝛼𝑖𝑪𝐷)
−1

 (50) 

In the analysis step, the measurements must be treated as random variables, 

adding to them a white Gaussian noise with covariance 𝑪𝐷 in order to prevent a too 

high reduction in the ensemble variance (BURGERS; VAN LEEUWEN; EVENSEN, 

1998). In the ES-MDA, the errors are sampled using the following equation: 

 𝒅𝑜𝑏𝑠,𝑗
𝑖 = 𝒅𝑜𝑏𝑠 +√𝛼𝑖𝑪𝐷

1 2⁄ 𝒛𝑗 , (51) 
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where 𝒅𝑜𝑏𝑠 is the vector containing the observed data (measurements), and 𝒛𝑗 is a 

Gaussian sample with 𝒛𝑗~𝒩(0, 𝑰𝑁𝑑). An important thing to point out is, assuming the 

observed data are uncorrelated (typical for production data), 𝑪𝐷 is a diagonal matrix 

the of form: 

 

𝑪𝐷 =

[
 
 
 
𝜎1
2 0 ⋯ 0

0 𝜎2
2 ⋮

⋮ ⋱ 0
0 ⋯ 0 𝜎𝑁𝑑

2 ]
 
 
 

, (52) 

where 𝜎 represents the standard deviation of each measurement error. One of the 

characteristics of the ES-MDA is the fact that 𝑪𝑀𝐷
𝑖  and 𝑪𝐷𝐷

𝑖  are estimated around the 

ensemble mean. Then: 

 
𝑪𝑀𝐷
𝑖 =

1

𝑁𝑒 − 1
∑(𝒎𝑗

𝑖 − 𝒎̅𝑖)(𝒅𝑗
𝑖 − 𝒅̅𝑖)

𝑇
𝑁𝑒

𝑗=1

, (53) 

and, 

 
𝑪𝐷𝐷
𝑖 =

1

𝑁𝑒 − 1
∑(𝒅𝑗

𝑖 − 𝒅̅𝑖)(𝒅𝑗
𝑓
− 𝒅̅𝑖)

𝑇
𝑁𝑒

𝑗=1

, (54) 

where the overbars denote the ensemble mean: 

 
𝒎̅𝑖 =

1

𝑁𝑒
∑𝒎𝑗

𝑖

𝑁𝑒

𝑗=1

, (55) 

and, 

 
𝒅̅𝑖 =

1

𝑁𝑒
∑𝒅𝑗

𝑖

𝑁𝑒

𝑗=1

. (56) 

Emerick and Reynolds (2013) proved that for the ES-MDA to sample correctly 

the posterior model parameters in equivalence with the linear-Gaussian case, the 

inflation factors must be selected so that they obey the following condition over the 𝑁𝑖 

iterations: 

 

𝛽𝑖 =∑
1

𝛼𝑖

𝑁𝑖

𝑖=1

= 1. (57) 
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In standard ES-MDA, the number of iterations and their inflation factors are 

defined previously by the user. Due to this, the ES-MDA cannot continue iterating if the 

algorithm does not provide a reasonable matching after 𝑁𝑖 iterations. Therefore, it is 

necessary to restart the entire process, redefining the number of iterations and inflation 

factors. Emerick (2016) proposed an adaptive algorithm that directly relates the 

inflation factor to the data mismatch. This algorithm continues iterating until it reaches 

a desirable matching and reduces spurious correlations, since smaller step sizes 

(larger inflation factors) must be used in early iterations (LE; EMERICK; REYNOLDS, 

2016). 

In the adaptive ES-MDA, the inflation factor at each iteration is computed 

through the following equation: 

 𝛼𝑖 = 𝑚𝑖𝑛{𝑎𝑂̅𝑁𝑑
𝑖 , 𝛼𝑚𝑎𝑥},          with  a > 0 (58) 

where 𝑎 is the coefficient that relates the inflation factor with an objective function that 

measures the discrepancy between the simulated and observed data 𝑂̅𝑁𝑑
𝑖 , and 𝛼𝑚𝑎𝑥 

is the maximum inflation factor defined by the user. Before the analysis step at each 

iteration, the condition of Eq. 57 must be verified. If the condition 𝛽𝑖 > (1 − 𝛼𝑚𝑎𝑥
−1 ) is 

obtained or the maximum iteration number is reached (𝑁𝑖 = 𝑁𝑖,𝑚𝑎𝑥), a new inflation 

factor must be calculated for 𝛽𝑖 set equal to one, and the last iteration step is 

performed. 

3.2.1.1 Ensemble representation and pseudo-inversion in the analysis 

Dropping the iteration index in the analysis step, the ES-MDA can also be 

represented in matrix terms. We can define 𝑴 ∈  ℜ𝑁𝑚×𝑁𝑒 and 𝑫 ∈  ℜ𝑁𝑑×𝑁𝑒 the 

matrices holding the ensemble members 𝒎𝑗  and 𝒅𝑗, respectively: 

 𝑴 = [𝒎1,𝒎2, … ,𝒎𝑁𝑒] (59) 

and, 

 𝑫 = [𝒅1, 𝒅2, … , 𝒅𝑁𝑒] (60) 

According to Evensen (2004), the ensemble perturbation matrix can be 

represented as: 
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 𝑴′ = 𝑴−𝑴 = 𝑴. (𝑰 − 𝟏𝑁𝑒) (61) 

and, 

 𝑫′ = 𝑫−𝑫 = 𝑫. (𝑰 − 𝟏𝑁𝑒) (62) 

where the overbars denote the matrix containing the ensemble mean in each column 

and the term 𝟏𝑁𝑒  ∈  ℜ
𝑁𝑒×𝑁𝑒 is a matrix where each element is equal to 1/𝑁𝑒. Thus, 

both covariances 𝑪𝑀𝐷 and 𝑪𝐷𝐷 can be constructed as a function of the ensemble 

perturbation matrix: 

 
𝑪𝑀𝐷 =

𝑴′(𝑫′)𝑇

𝑁𝑒 − 1
 (63) 

and, 

 
𝑪𝐷𝐷 =

𝑫′(𝑫′)𝑇

𝑁𝑒 − 1
 (64) 

Using the definitions of Eqs. (63) and (64), the analysis for each iteration 𝑖 can 

be expressed in terms of ensemble perturbations as: 

 
𝑴𝑖+1 = 𝑴𝑖 +𝑴′𝑖(𝑫′𝑖)

𝑇
[𝑫′𝑖(𝑫′𝑖)

𝑇
+ (𝑁𝑒 − 1)𝛼𝑖𝑪𝐷]

−1

(𝑫𝑜𝑏𝑠
𝑖

−𝑫𝑖) 

(65) 

Dropping the iteration index again, the matrix 𝑪 = [𝑫′𝑖(𝑫′𝑖)
𝑇
+ (𝑁𝑒 − 1)𝛼𝑖𝑪𝐷] 

must be inverted, but it may be singular when the dimension of 𝑪 becomes large, being 

necessary compute the pseudo-inverse 𝑪+ of 𝑪, since 𝑪+ ≡ 𝑪−1, when 𝑪 is full rank 

(EVENSEN, 2004). Evensen (2004) proposed a stable pseudo-inversion method 

called ‘subspace inversion’ for the case with a large number of measurements (𝑁𝑑 ≫

𝑁𝑒). In this method, a singular value decomposition (SVD) of 𝑫′ is used to compute the 

inverse in the 𝑁𝑒 dimensional ensemble space (EVENSEN, 2004). According to Wang, 

Li and Reynolds (2010), very small singular values can result in errors, due to this, a 

truncated singular value decomposition (TSVD) is applied to estimate the pseudo-

inverse during the procedure. Besides that, several authors report the need of scale 

the matrix 𝑪 before the inversion (EVENSEN, 2003; WANG; LI; REYNOLDS, 2010; 

EMERICK, 2016). This scale is needed for the reason that parameters of different 

magnitudes can have all respective singular values eliminated during the truncation. 
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An efficient way to perform this rescaling is using the measurement errors matrix in 

such a way that 𝑪 elements have the same variability (WANG; LI; REYNOLDS, 2010; 

EMERICK, 2016). The rescaling procedure used in this work was proposed by Emerick 

(2016), where the square root diagonal elements of 𝑪𝐷 were used to perform the 

rescaling before the inversion. Thus, the matrix 𝑪 after the scaling becomes: 

 𝑪 = 𝑺[𝑺−1𝑫′(𝑫′) 𝑇𝑺−1 + (𝑁𝑒 − 1)𝛼𝑪̂𝐷]𝑺 (66) 

where 𝑺 ∈  ℜ𝑁𝑑×𝑁𝑑 is the matrix containing the square root of the diagonal elements 

of 𝑪𝐷 and 𝑪̂𝐷 is the correlation matrix of the errors (EMERICK, 2016). When the 

observed data are uncorrelated, 𝑪̂𝐷 is an identity matrix with size 𝑁𝑑. 

The SVD of the matrix 𝑺−1𝑫′ is defined as: 

 𝑺−1𝑫′ = 𝑼0∑0𝑽0
𝑇 (67) 

where, 𝑼0  ∈  ℜ
𝑁𝑑×𝑁𝑑 and 𝑽0  ∈  ℜ

𝑁𝑒×𝑁𝑒 are orthogonal matrices containing the left and 

right singular vectors, respectively, and ∑0  ∈  ℜ
𝑁𝑑×𝑁𝑒 is the diagonal matrix containing 

the singular values 𝜆 (𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑁𝑑 > 0) of the matrix 𝑺−1𝑫′. The TSVD retains 

only the 𝑁𝑟 largest singular values, according to the following condition: 

 ∑ 𝜆𝑖
𝑁𝑟
𝑖=1

∑ 𝜆𝑖
𝑁𝑑
𝑖=1

 ≤ 𝐸 (68) 

where 𝐸 is the energy of the singular values retained. Thus: 

 𝑺−1𝑫′ ≈ 𝑼𝑟∑𝑟𝑽𝑟
𝑇 (69) 

where 𝑼𝑟  ∈  ℜ
𝑁𝑑×𝑁𝑟, 𝑽𝑟  ∈  ℜ

𝑁𝑟×𝑁𝑒 and ∑𝑟  ∈  ℜ
𝑁𝑟×𝑁𝑟. The pseudo-inverse of the matrix 

𝑺−1𝑫′ is defined as: 

 (𝑺−1𝑫′)+ ≈ 𝑽𝑟∑𝒓
+𝑼𝑟

𝑇 (70) 

where ∑𝒓
+ is defined as diag(∑𝒓

+) = (𝜆1
−1, 𝜆2

−1, … , 𝜆𝑁𝑟
−1) . This subspace inversion using 

the TSVD of 𝑺−1𝑫′ extract only the subspace consisting of the 𝑁𝑟 dominant directions 

in 𝑼𝑟 (EVENSEN, 2004). Using the approximation, the matrix 𝑪 can be defined as: 

 𝑪 ≈ 𝑺𝑼𝑟∑𝑟(𝑰𝑟 + (𝑁𝑒 − 1)𝛼∑𝑟
+𝑼𝑟

𝑇𝑪̂𝐷𝑼𝑟∑𝑟
+𝑇)∑𝑟

𝑇𝑼𝑟
𝑇𝑺 (71) 

where 𝑹 = (𝑁𝑒 − 1)𝛼∑𝑟
+𝑼𝑟

𝑇𝑪̂𝐷𝑼𝑟∑𝑟
+𝑇 is a real-symmetric matrix. Applying SVD to 𝑹, 

 𝑹 = 𝒁𝑟𝚲𝑟𝒁𝑟
𝑇 (72) 
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and applying this in Eq. (71), 𝑪 becomes: 

 𝑪 ≈ 𝑺𝑼𝑟∑𝑟𝒁𝑟(𝑰𝑟 + 𝚲𝑟)𝒁𝑟
𝑇∑𝑟

𝑇𝑼𝑟
𝑇𝑺. (73) 

Being ∑𝑟
+ = ∑𝑟

+𝑇 and 𝑺 = 𝑺𝑇, the pseudo-inverse of 𝑪 becomes: 

 𝑪+ = (𝑺−𝟏𝑼𝑟∑𝑟
+𝒁𝑟)(𝑰𝑟 + 𝚲𝑟)

−1(𝑺−𝟏𝑼𝑟∑𝑟
+𝒁𝑟)

𝑇 . (74) 

3.2.2 Objective Functions 

A very common way to measure this discrepancy is through the quadratic 

difference between the simulated and observed data, normalized by the measurement 

errors matrix, so that the errors have the same magnitude (SILVA et al., 2016; LE; 

EMERICK; REYNOLDS, 2016; EMERICK, 2016). The normalized objective function 

that represents the data-mismatch for each member 𝑗 at each iteration is: 

 
𝑶𝑁𝑑,𝑗
𝑖 =

1

2𝑁𝑑
(𝒅𝑗

𝑖 − 𝒅𝑜𝑏𝑠)
𝑇
𝑪𝐷
−1(𝒅𝑗

𝑖 − 𝒅𝑜𝑏𝑠), (75) 

and the averaged objective function is defined by: 

 
𝑂̅𝑁𝑑
𝑖 =

1

𝑁𝑒
∑𝑶𝑁𝑑,𝑗

𝑖

𝑁𝑒

𝑗=1

. (76) 

A way to verify the mismatch of the updated models is through an objective 

function similar to that used in the data matching (Eq. 76). Chen and Oliver (2016) 

define an objective function to measure the changes as: 

 𝑶𝑁𝑚,𝑗 = (𝒎𝑝𝑟,𝑗 −𝒎𝑗)
𝑇
𝑪𝑀
−1(𝒎𝑝𝑟,𝑗 −𝒎𝑗) (77) 

where 𝒎𝑝𝑟 and 𝒎 denotes the prior and updated vector of model parameters, 

respectively, and 𝑪𝑀 ∈  ℜ
𝑁𝑚×𝑁𝑚 is the covariance of the prior model parameters. The 

number of parameters in large-scale problems is an issue that makes the construction 

of  𝑪𝑀 (in this case study specifically, 𝑪𝑀 would be a 192335 × 192335 matrix) and 

calculation of its inverse 𝑪𝑀
−1 (or pseudo-inverse 𝑪𝑀

+ ) unfeasible. In this equation, the 

only function of 𝑪𝑀
−1 is scaling the deviations of each parameter. Thus, an 

approximation was performed, resulting in an equation similar to 𝑶𝑁𝑑,𝑗, that can be 

used to calculate the mismatch where the deviations are normalized: 
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𝑶̃𝑁𝑚,𝑗
𝑖 =

1

𝑁𝑚
∑ (

𝒎𝑚,𝑗
𝑝𝑟 −𝒎𝑚,𝑗

𝑖

𝜎𝑚
𝑝𝑟 )

2𝑁𝑚

𝑚=1

 (78) 

where 𝜎𝑚
𝑝𝑟

 represents the standard deviation of a parameter 𝑚 in the prior ensemble. 

Similar to this, the averaged objective function for the model mismatch becomes: 

 

𝑂̃𝑁𝑚
𝑖 =

1

𝑁𝑒
∑𝑶̃𝑁𝑚,𝑗

𝑖

𝑁𝑒

𝑗=1

 (79) 

3.2.3 Kalman Gain Localization 

In most of the practical large-scale reservoir history matching problems, the 

number of model parameters is much higher compared to the ensemble size (𝑁𝑚 ≫

𝑁𝑒).  In standard assimilation applications, this fact can lead to spurious correlations 

and near ensemble collapse (high reduction in ensemble variance) in the updated 

model parameters. One way to reduce these effects is to apply a localization technique 

in the analysis scheme to increase the number of degrees of freedom (CHEN; OLIVER, 

2016).  

This work will apply the localization directly in the Kalman Gain matrix, where 

the localization is performed using the element-wise product (Schur product) between 

the localization matrix 𝝆 ∈  ℜ𝑁𝑚×𝑁𝑑 and the Kalman Gain matrix: 

 𝑲̃ = 𝝆 ∘ 𝑲 (80) 

Then, the analysis scheme in the adaptive ensemble smoother can be 

performed using the same form than no-localization methodology: 

 𝒎𝑗
𝑖+1 = 𝒎𝑗

𝑖 + 𝑲̃(𝒅𝑜𝑏𝑠,𝑗
𝑖 − 𝒅𝑗

𝑖) (81) 

Each element of 𝝆 is a number between 0 and 1 to weight the matrix 𝑲 based 

on the spatial positions of the model parameters and data: 

 

𝝆 =

[
 
 
 
𝜌𝑚1,𝑑1 𝜌𝑚1,𝑑2 ⋯ 𝜌𝑚1,𝑑𝑁𝑑

𝜌𝑚2,𝑑1 𝜌𝑚2,𝑑2 𝜌𝑚2,𝑑𝑁𝑑

⋮ ⋱ ⋮
𝜌𝑚𝑁𝑚,𝑑1 𝜌𝑚𝑁𝑚,𝑑2 ⋯ 𝜌𝑚𝑁𝑚,𝑑𝑁𝑑]

 
 
 

 (82) 
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In distance-based localization, a correlation function is used to determine the 

values of 𝝆 according to the distance between the model parameter and the data. One 

of the most used, is the correlation proposed by Gaspari and Cohn (1999): 

𝜌𝑚,𝑑

= 

{
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𝑧
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(83) 

where 𝑧 is the Euclidean distance between the location of model parameter 𝑚 and the 

data 𝑑 and 𝐿 is the critical length. Figure 15 show the shape of Gaspari and Cohn 

correlation as a function of the critical length. 

Figure 15 - Gaspari-Cohn correlation as a function of critical length. 

 
In this work, the methodology will be tested by varying the critical lengths 

mentioned above, and their impact on the adaptive ES-MDA will be analyzed. Figure 

16 illustrates the adopted workflow of the adaptive ES-MDA plus Kalman gain 

localization. 
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Figure 16 - Workflow of the adaptive ES-MDA plus Kalman gain localization. 

 

3.3 Case Study 

The simulation model used in this work is the UNISIM-I-H benchmark for history 

matching (MASCHIO et al., 2015). The UNISIM-I synthetic reservoir model was built 

using public data from Namorado Field, a Brazilian offshore field in Campos Basin 

(AVANSI; SCHIOZER, 2015). This black oil reservoir model is composed of a corner 

point grid (81x58x20 cells), with 38466 active gridblocks and one main fault that 

separate the reservoir into two sectors. UNISIM-I-H contains 11 years of production 
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history of 14 producer wells and 11 injector wells, and the dataset is composed by 

monthly measurements of oil and water production rate, gas-oil ratio (GOR), water 

injection rate and bottom-hole pressure (BHP) of all wells. Measurements were 

obtained through the fine-scale UNISIM-I-R (326x234x157 cells) reference model and 

a random noise was added to the observed well data (MASCHIO et al., 2015). Figure 

17 shows the position of the fault and the location of wells projected into the first layer 

grid top of the UNISIM-I-H. 

Figure 17 - First layer grid top of UNISIM-I-H benchmark (wells projected). 

 
The uncertainties of the case study can be separated into two categories: 

petrophysical properties (grid values) and global properties (scalar values). The prior 

petrophysical uncertainties set consists of equiprobable realizations containing 

porosity, net-to-gross ratio, and permeability in the three orthogonal directions. The 

global uncertainties are the water-oil contact at the east sector, rock compressibility, 

vertical permeability multiplier and two parameters related to the water relative 

permeability curve (Corey exponent and the maximum water relative permeability). 

The Corey function was used to model the water relative permeability curve. The 

uncertain properties were used according to the benchmark description (MASCHIO et 

al., 2015), the total number of data points is 𝑁𝑑 = 5552 and the total number of model 

parameters is 𝑁𝑚 = 192335. 

 In this history matching problem, the producer wells control is made by liquid 

rate and the injector wells control is made by the water injection rate. It is important to 

note that water injection rate is used as a measurement to be assimilated even when 

steered, since not always the controlled values can be satisfied during the simulation 

of the entire ensemble. As pointed before, the measurements in the analysis scheme 
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need to be treated as random variables. Table 1 shows the measurement errors used 

in this study to construct the measurement errors matrix 𝑪𝐷. It is important to point out 

the fact that parameters with values equal to zero (for example, oil and water rate) 

must have a minimum error to keep treating that parameter as random variable. 

Table 5 - Measurement errors in data assimilation used to construct the measurement errors matrix. 

Measurement Type Measurement error 

Oil production rate 10% (minimum of 1 m³/d) 
Water production rate 15% (minimum of 1 m³/d min) 
Gas-oil Ratio 20% (minimum of 10 m³/d min) 
Water injection rate 05% (minimum of 1 m³/d min) 
Bottom-hole pressure 5 kgf/cm² 

The adaptive ES-MDA were applied in the case study to assimilate the 

production data available using an ensemble size equal to 𝑁𝑒 = 200 and the effect of 

Kalman Gain localization was analyzed varying the critical length (without localization, 

L varying from 1000 m to 3000 m). All cases use the following iteration parameters: 

𝛼𝑚𝑎𝑥 = 1000, 𝑎 = 0.25 and 𝑁𝑖,𝑚𝑎𝑥 = 15. In subspace inversion, 99% of the singular 

values energy was retained (𝐸 = 0.99). In the construction of the localization matrix for 

the petrophysical uncertainties, the 𝜌𝑚,𝑑 were truncated to have only nonzero values, 

if the parameter and data were located in the same sector of the reservoir (being an 

implementation similar to the local analysis procedure). Regarding to the global 

uncertainties, only the water-oil contact of the east sector was restricted to assimilate 

just the data from their respective sector. Figure 18 shows an example of the 

localization matrix (𝜌 values) using this procedure. 

Figure 18 - Values of ρ in the localization matrix for producer well NA3D and L = 2000 m. 
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3.4 Results of Assimilation of Production Data 

The history matching using the adaptive ES-MDA presented a reduction in the 

data mismatch objective function from 967.08 to 4.14 (for L = 2500 m) approximately. 

Table 2 shows the mean and standard deviation for 𝑂𝑁𝑑 and 𝑂̃𝑁𝑚, for the prior and 

posterior model ensembles for each case after applying the methodology. The values 

for the data matching objective function show that the methodology provides a high 

reduction in the data mismatch, regardless of the critical distance value. Besides that, 

it is possible to verify an improvement due to the use of the localization, except for the 

case with the lowest critical length of the study (L = 1000 m). 

Table 6 - Mismatch of data and model objective functions (mean ± standard deviation). 

L (m) 𝑵𝒊 𝑶𝑵𝒅 Õ𝑵𝒎 (𝟏𝟎−𝟔) 

Prior - 967.0853 ± 632.0824 - 

1000 14 19.5446 ± 20.3951 5.0764 ± 0.3119 

1500 10 4.6623 ± 2.5942 7.1995 ± 0.4037 

2000 9 4.2966 ± 3.1282 9.2001 ± 0.4860 

2500 8 4.1440 ± 2.5013 10.5394 ± 0.5571 

3000 8 4.4740 ± 2.0890 11.3698 ± 0.5707 

No localization 7 7.3220 ± 0.2700 20.1602 ± 1.1311 

Analyzing the inflation factor evolution over the iterations (Figure 19), it is also 

possible to verify that the case mentioned above (L = 1000 m) took a high number of 

iterations to perform the algorithm, and even then, it presented worse results compared 

with the no localization case. One possible reason for this is the fact that very low 

critical length values greatly reduce the effective number (nonzero elements in the 

localization matrix) of model parameters to be assimilated. 

Figure 19 - Inflation factor evolution over iterations for different critical lengths. 
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The effectiveness of the matching can also be verified through the well time 

series for the prior and posterior models parameters. Figure 20 to Figure 23 shows the 

time series of one producer and one injector well of each sector for the cases with 

worse and better 𝑂̅𝑁𝑑 values (L = 1000 m and 2500 m, respectively), where the gray 

lines represents the prior ensemble, blue lines represent the posterior ensemble and 

the red dots represent the history data. Both cases present satisfactory results, but it 

is clear to see an improved matching for the lowest 𝑂̅𝑁𝑑 case (L = 2500 m), especially 

in the water rate of the producer wells (Figure 20c,d, Figure 21c,d). 

Figure 20 - Time series of producer well NA3D. The gray lines represent the prior ensemble and the 
blue lines represent the posterior ensemble, red dots are the measurements. 

 
(a) Oil rate for L=1000 m. (b) Oil rate for L=2500 m. 

 
(c) Water rate for L=1000 m. (d) Water rate L=2500 m. 

 
(e) Gas Oil Ratio for L=1000 m. (f) Gas Oil Ratio for L=2500 m. 
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(g) Bottom-hole pressure for L=1000 m. (h) Bottom-hole pressure for L=2500 m. 

Figure 21 - Time series of producer well PROD023A. The gray lines represent the prior ensemble and 
the blue lines represent the posterior ensemble, red dots are the measurements. 

 
(a) Oil rate for L=1000 m. (b) Oil rate for L=2500 m. 

 
(c) Water rate for L=1000 m. (d) Water rate L=2500 m. 

 
(e) Gas Oil Ratio for L=1000 m. (f) Gas Oil Ratio for L=2500 m. 
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(g) Bottom-hole pressure for L=1000 m. (h) Bottom-hole pressure for L=2500 m. 

Figure 22 - Time series of water injector well INJ010. The gray lines represent the prior ensemble and 
the blue lines represent the posterior ensemble, red dots are the measurements. 

  
(a) Water rate for L=1000 m. (b) Water rate L=2500 m. 

 
(c) Bottom-hole pressure for L=1000 m. (d) Bottom-hole pressure for L=2500 m. 
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Figure 23 - Time series of water injector well INJ022. The gray lines represent the prior ensemble and 
the blue lines represent the posterior ensemble, red dots are the measurements. 

 

(a) Water rate for L=1000 m. (b) Water rate L=2500 m. 

 

(c) Bottom-hole pressure for L=1000 m. (d) Bottom-hole pressure for L=2500 m. 

Besides the data matching, the update of the model parameters ensemble must 

be analyzed in order to verify if the main characteristics of the prior ensemble are 

preserved, avoiding a poor uncertainty assessment and forecast prediction of the 

reservoir model. Two parameters that can be analyzed are the differences between 

the prior and posterior ensemble members (the model plausibility) and the changes in 

the standard deviations between the prior and posterior ensemble (uncertainty 

assessment). Figure 24 presents the distributions for the water-oil contact of the east 

sector (local scalar parameter) and the rock compressibility (global scalar parameter). 

The posterior distributions of water-oil contact (Figure 24a) for the restricted cases 

present larger variability in relation to the case without localization. This illustrates the 

importance of restricting the scalar parameters when it is possible, since in the cases 

without the restriction, the posterior distribution tends to ensemble collapse, as can be 

observed in all cases for the rock compressibility (Figure 24b). 
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Figure 24 - Distribution of prior and posterior water-oil contact of the east block and rock 
compressibility. 

 
(a) Distribution for the water-oil contact of the 

east sector. 

(b) Distribution for the rock compressibility. 

The 𝑂̃𝑁𝑚 mean values in Table 2 show a relationship between the critical length 

and the mismatch of the prior and posterior ensemble. The cases presented similar 

values for the data mismatch objective function mean (except for L = 1000 m) but 

different values for the model mismatch objective function mean, showing the 

importance of the properly selection of the localization parameters. Figure 25 shows 

the log-permeability in i-direction (ln(𝑘𝑖)) for the first realization of the prior and 

posterior models, and it is possible to see how the localization is able to preserve the 

characteristics of the prior model. It is also possible to verify that the case without 

localization generates high roughness and extreme values in the updated model. 

Figure 25 - First layer log-permeability field in i-direction of the first realization before and after the 
assimilation for different critical lengths. 

 
(a) Prior. (b) Without localization. 
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(c) L = 1000 m. (d) L = 1500 m. 

 
(e) L = 2000 m. (f) L = 2500 m. 

 
(g) L = 3000 m 

An effective way to quantify the uncertainty reduction in field parameters after 

the update is through the normalized variance maps (relation between the posterior 

and prior variance of the model parameters) (SOARES; MASCHIO; SCHIOZER, 2018; 

EMERICK, 2018). Figure 26 shows the normalized variance of the first layer log-

permeability in i-direction (ln(𝑘𝑖)). It is possible to verify the ensemble collapse in the 

case without localization, and a large uncertainty reduction as the critical length 

increases. It is also possible to observe a better uncertainty assessment in the east 

sector, probably an effect of the restriction imposed in the localization matrix, where 

the relation 𝑁𝑚 𝑁𝑒⁄  is lower in the east sector than the west, providing a better posterior 

sampling of model parameters ensemble, since according to Evensen (2003). It is 

expected that a larger ensemble is needed to assimilate the whole model parameters 

(𝑁𝑚-size) than only a local subset of them. 
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Figure 26 - Normalized variance of prior and posterior models of log-permeability in i-direction for 
different critical lengths. 

 
(a) Without localization. (b) L = 1000 m. 

 
(c) L = 1500 m. (d) L = 2000 m. 

 
(e) L = 2000 m. (f) L = 3000 m. 

3.5 Conclusions 

This work performed an adaptive history matching with a distance-based 

localization method in a synthetic large-scale reservoir model. The main conclusions 

obtained are: 

• The adaptive ES-MDA showed consistent results, presenting a considerable 

reduction of the data mismatch for all cases, making the history matching 

process easier since the number of iterations is estimated by the algorithm, 

which has the efficiency to continue the iteration process regardless of the 

choice of inflation factors. 
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• The results indicate that the localization does have influences in the process 

when an adaptive algorithm is applied, as can be seen when the lowest 

critical length in the study (L = 1000 m) resulted in a high number of iterations 

(that greatly increases the total computational time) to complete the 

algorithm, and in addition presenting higher values for the data-mismatch 

objective function (𝑂̅𝑁𝑑 equal to 19.54 for L = 1000 m). 

• The simple fact of restricting a scalar parameter when possible, showed an 

improvement in their posterior sampling, as observed when using 

localization in the water-oil contact of the east sector. 

• Only data matching evaluation is not a sufficient parameter to analyze the 

quality of the matching, because, in this work, different critical lengths 

showed similar data matchings.  

• An important analysis to be made is the quantification of the mismatch 

between the prior and posterior parameters, in order to preserve the 

characteristics of the prior ensemble. In this work, an approximation of the 

𝑪𝑀 matrix was able to estimate these mismatches, being possible to 

establish a direct relation between the model mismatches and the critical 

length used in localization. 

• Localization techniques are fundamental in large-scale problems in order to 

prevent roughness and ensemble collapse, as can be seen in the posterior 

model of the case without localization. 
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CHAPTER 4 - CONCLUSIONS 

 In an adaptive ES-MDA, the total number of iterations and the inflation factors 

required to perform the methodology are automatically selected by the algorithm. 

When the ES-MDA is applied in a large-scale reservoir history matching problem, these 

parameters had unknown behavior as function of some input parameters, for example, 

localization and ensemble size. We decided to investigate these parameters applying 

the methodology in a large-scale reservoir simulation model. After the investigation, it 

is possible to point out some important conclusions. 

 In Chapter 2, it is possible to conclude that ensemble size does not have any 

influence on the number of iterations and inflation factors. In this point of view, 

ensemble size must be selected according to the balance between the uncertainty 

reduction and computational time required to run the ensemble (as already known for 

other iterative methods). 

 However, when localization was investigated in Chapter 3, we verified that a 

higher reduction of the measurements influence can modify the number of iterations, 

and beyond that, it presents worse matchings in comparison with a higher influence of 

the measurements. This fact highlights the importance of correct implement the 

localization, even more when adaptive methodologies are applied. 

4.1 Future Research 

 The conclusion of the importance of the localization obtained in this work open 

the possibility of new studies to a broad area. One example is the necessity of 

evaluating the impact of the localization in carbonate reservoirs. Carbonate reservoirs 

require a high-resolution characterization and modeling with Dual-Porosity and Dual-

Permeability simulation grids (MAUCEC et al.; 2016). In addition, carbonate reservoirs 

also have the necessity to model hydraulic connections and Super-k features (very thin 

layers with high porosity and permeability). This reinforces the necessity of developing 

a robust localization methodology, since the distance only cannot be enough to 

represent the influence between the parameter and data in high heterogeneity 

reservoirs. Confirming this point of view, Maucec et al. (2016) pointed out the need to 

investigate the effects of streamline-based localization in carbonate reservoirs as 

possible solution to overcome the difficulties related to the high heterogeneity. 
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 Another thing that can be examined is the adaptive methodology itself (the way 

to automatically select the number of iterations and inflation factors). No best adaptive 

method emerged as the main methodology for history matching. Some previous works 

have proposed other adaptive methodologies, for example, ES-MDA-RLM (LE; 

EMERICK; REYNOLDS, 2016), ES-MDA-GEO (RAFIEE; REYNOLDS, 2017). 

 The ES-MDA-RLM method is fully automatic (inflation factors and number of 

iterations defined automatically) with an interesting Levenberg-Marquardt scheme, but 

in some previous tests that we performed in UNISIM-I-H, the algorithm did not 

converge as the required number of iterations being unfeasible. For this reason, we 

did not use the method in this dissertation. On the other hand, the ES-MDA-GEO has 

an interesting way of selecting the inflation factors, with proven improvements due his 

selection scheme (RAFIEE; REYNOLDS, 2017). However, the number of iterations in 

this method still need to be defined by the user. So, it is possible to conclude that the 

development of adaptive methodologies will become the main history matching 

researches goal. 
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