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Abstract. Numerical simulation is a tool for reservoir management, used to realize the 

prediction of a field during its productive life. Because the uncertainty parameters, a 

discrepancy between the real and simulated values may occur, being necessary the validation 

of the model, which is made through the history matching. In this work, the methodology of 

this matching was performed in two steps: re-evaluating 1) the uncertain geological 

petrophysical properties using random search to select the best images; 2) the productivity 

index of each well using evolutionary algorithm. Using the images found in the first step of 

the methodology, the second step is performed, with the parameter selected to modify the 

productivity of the wells being the skin factor. This methodology was applied in the UNISIM-

I-H benchmark model to validate it. The fluid model of the field was black-oil with the oil 

density equal to 28 ºAPI and the data consisting of 11 years of production of 14 producers 

and 11 injectors. In conclusion, considering the skin factor as uncertain parameter with the 

objective of altering the wells behavior resulted in improvements in the matching process. 

This can be observed through of reduction in the objective function from 23 to 7 percent. 
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1   INTRODUCTION 

Every oil company must elaborate a development plan to produce a field, since the 

economic viability of an oil recovery project depends on the performance of the production 

under current and future conditions. Basically, this plan is to inform how hydrocarbon 

production will be managed throughout the entire life of a field. To predict its development, 

technical and economic feasibility studies are required of the various alternatives of how the 

field can be explored: compare the implementation and maintenance costs, in relation to its 

expected return due to the production of the field hydrocarbons. Thus, it can be concluded 

that a fundamental task for the elaboration of a development plan is to determine the 

prediction of the production of the field during its productive life for all the alternatives that 

will be studied. 

Normally, the most used tool to realize this prediction of the field is the reservoir 

simulation. Simulation is to “assume the appearance without reality”. In petroleum 

engineering, mathematical models simulate the reservoir behavior over time, through 

equations and assumptions, with purpose of estimate field performance. The mathematical 

reservoir simulator consists basically of sets of partial differential equations that express 

conservation of mass and/or energy. In addition, the model entails various phenomenological 

“laws” describing the rate processes active in the reservoir. Required program input data 

include fluid PVT data, rock relative permeability and capillary pressure data (Coats, 1969). 

The properties discussed above have uncertainties due to obtaining methods, usually indirect 

methods. Because of these uncertainties, a discrepancy occurs between the simulated and 

observed values in the field. The history matching is precisely to carry out the revision of the 

simulation model, revaluing the properties with uncertainties in such a way that the 

discrepancy is reduced. It is traditionally performed by trial and error, modifying the values of 

some parameters in search of a better match (Rwechungura et al., 2011). 

The history matching is an inverse problem. One of the first studies was done by Kruger 

(1961). He presented a calculation procedure for determining the areal permeability in the 

reservoir. Watson et al. (1980) formulated an algorithm based on optimal control approach for 

joint estimation of permeability, porosity and coefficients of relative permeability in two-

phase reservoirs, using pressure and production rate data as observed values. According to 

Tavassoli et al. (2004), the best production-matched model does not necessarily have a good 

fit for the parameters of the reservoir, and this can provide different values in the forecast 

period. Schiozer et al. (2005) presents a procedure that integrate the history matching with 

uncertainty analysis, when several possible models are generated based on the probability 

value of each attribute that constitutes the model. Abrahem et al. (2010) presented an assisted 

approach called “Target Pressure and Phase Method”, where the computer automatically 

places pseudo wells in the static model to reproduce the measured data and concludes that this 

method is useful for practical applications. Oliver and Chen (2010) carried out a review of the 

recent progress on reservoir history matching and conclude that no single best method has 

emerged and the total computational effort required for history matching is still excessive. 

Cancelliere et al. (2011) discuss the benefits and limitations of assisted history matching and 

comments it is unlikely to find a reservoir engineer with the mathematical background 

required to apply more complex optimization algorithms in reservoir models. Random search 

is a numerical optimization method that not requires the gradient of the function to be 

optimized, in other words, the differentiability of the function is irrelevant (Baba, 1981). 
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Bergstra and Bengio (2012) point out some advantages in using random search methods: the 

experiment can be stopped any time and the trials form a complete experiment. If extra 

computers become available, new experiments can be add without adjust the algorithm and if 

the computer carrying out an experiment fails it can be abandoned or restarted without 

reducing the algorithm efficiency. Another advantage of this is the convergence to the 

optimum solution as the number of experiments gets large (Spall, 2003). Gentle et al. (2012) 

indicates that the method is a reasonable algorithm when the number of parameters is low. 

In evolutionary algorithms methods, biology-inspired mechanisms steps (reproduction, 

mutation, recombination and selection) are used to find candidate solutions to the 

optimization problem: randomly initialized points of the search space are chosen and the 

fitness of each point in the population is evaluated, the bests points are selected for breeding 

new points through crossover and mutation operations, the new points are then evaluated and 

the new points population are updated. One of the main advantages of evolutionary 

techniques is that they do not have much mathematical requirements about the optimization 

problem (Michalewicz et al., 1996). These techniques usually have difficulties in solving 

constrained numerical optimization problems, one of the main reasons behind these failures is 

the inability of evolutionary methods to search precisely the boundary area between feasible 

and infeasible regions of the search space (Schoenauer and Michalewicz, 1998). However, 

this type of algorithms has been applied with success in the petroleum area (Sampaio et al., 

2015).  

The main objectives of this work are: addressing the theoretical concepts involving the 

history matching procedure, present a new methodology for the adjustment that allow to 

choose multiple discrete parameters and apply the proposed methodology in a field model. 

2  METHODOLOGY 

The proposed methodology uses two optimization algorithms: random search and an 

evolutionary algorithm in two distinct steps. The first optimization step has the purpose of 

analyze and select the best petrophysical images described in the case study, since they were 

randomly generated; the second step has the objective of optimizing the scenarios selected in 

the previous step. 

During the construction of the simulation model, loss of information may occur because 

the process of upscaling, especially in the near-well regions. Because of this, it may be 

necessary to perform a re-evaluation of the well productivity index. The definition of 

productivity is expressed in Equation 1: 

𝑝𝑖 =
2𝜋√𝑘𝑖𝑘𝑗ℎ

ln(
𝑟𝑒
𝑟𝑤

) + 𝑠
 , (1) 

where 𝑘𝑖 and 𝑘𝑗 represents the permeability in the directions i and j respectively, ℎ is the grid 

block length in k direction, 𝑟𝑒 is the well effective radius, 𝑟𝑤 is the wellbore radius and 𝑠 is the 

skin factor, which represents a damage or stimulus in the near-well formation. This re-

evaluation is usually done by creating a permeability modifier around each well. In this work, 

the well productivity was changed by varying the skin factor and the efficiency of using this 

parameter was analyzed. 
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The justification for performing the matching in two optimization steps is due to the fact 

that if it was performed in a single step, the optimization algorithm would select a single 

optimum scenario, additionally; the skin factor was added only in the second step, because if 

it was added in the first, the number of parameters would increase from 6 to 31, reducing the 

random search efficiency considerably (Spall, 2003). The flow simulator is the Imex® (CMG) 

and the matching was performed through CMOST® (CMG) optimizer simulator. 

Basically, the methodology consists in evaluate the entire domain of petrophysical 

parameters field using random search and select the bests parameters scenarios using 

statistics, then optimize them using an evolutionary algorithm in order to obtain multiple 

adjusted models. The workflow of the methodology can be seen below in the Figure 1: 

 

Figure 1 - Workflow of the proposed methodolgy. 

2.1 Step 1: Initial Parameters 

In this step, the uncertain parameters and their properties are defined. Using the initial 

parameters provided in the case study section, the case base was built, which will be the 

starting reference point for the optimization stage (evaluation 0). In this work, all the data 

used are according to the information provided by the benchmark case study UNISIM-I-H, 

which will be described later. 

2.2 Step 2: Random Search 

The algorithm used in the first step of the proposed methodology was the blind random 

search, where the current sample does not consider the previous experiments.  

The blind random search steps for the implementation are presented in Figure 2. Let P be 

the matrix with all parameters defined and P* the best solution obtained for objective function 

F(P). We need to choose an initial value of Pn(n=0), calculate F(P0), and defines this as the 

best solution obtained (P*n = P0). In next step, generate a new P matrix (Pn+1), if F(Pn+1) is 

less than P*n, set the new Pn(n+1) as the new best solution, otherwise, keep the previous one. 

Stop the algorithm if the number of maximum evaluations (nmax) has been reached, otherwise, 

generate another matrix and proceed with the algorithm (n=n+1). 
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Figure 2 - Methodology of the blind random search algorithm. 

During both steps of optimization, the results were compared with the real values using 

an objective function based on the available CMOST®, which measures the relative 

difference between the simulation results and observed values. 

𝑄𝑖,𝑗(%) =

√∑ (𝑌𝑖,𝑗,𝑡
𝑠 −𝑌𝑖,𝑗,𝑡

𝑚 )
2𝑇(𝑖,𝑗)

𝑡=1

𝑇(𝑖,𝑗)

𝑆𝑐𝑎𝑙𝑒𝑖,𝑗
× 100 ∀ 𝑖, 𝑗, (2) 

where, 𝑖, 𝑗, 𝑡 is the subscripts representing well, production data type and time respectively, 

𝑇(𝑖, 𝑗) is the number of dates that have measurements,  𝑌𝑖,𝑗,𝑡
𝑠  is the simulated results, 𝑌𝑖,𝑗,𝑡

𝑚  is 

the observed values. The term 𝑆𝑐𝑎𝑙𝑒𝑖,𝑗 is a normalization parameter, which is the maximum 

of the following three quantities (Equations. 3, 4, and 5): 

∆𝑌𝑖,𝑗
𝑚, (3) 

0,5 × 𝑚𝑖𝑛(|𝑚𝑎𝑥(𝑌𝑖,𝑗,𝑡
𝑚 )|, |𝑚𝑖𝑛(𝑌𝑖,𝑗,𝑡

𝑚 )|), (4) 

0,25 × 𝑚𝑖𝑛(|𝑚𝑎𝑥(𝑌𝑖,𝑗,𝑡
𝑚 )|, |𝑚𝑖𝑛(𝑌𝑖,𝑗,𝑡

𝑚 )|), (5) 
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where, ∆𝑌𝑖,𝑗
𝑚 is the measured maximum change. 

The total history match error is calculated using the weighted average formula with all 

errors presented above in the Equation 6: 

𝑄(%) =
∑ 𝑄𝑖,𝑗𝑖𝑗

∑ 𝑤𝑖𝑖𝑗
, (6) 

where, 𝑄𝑖,𝑗 represents the objective function for well i and production data type j, 

respectively, and 𝑤𝑖 represents the weight of each 𝑄𝑖,𝑗 in the calculation (in this work all 

weights were equal to 1). 

The objective function described in this session basically calculates the average of the 

errors of each well and parameter calculated separately.  

2.3 Step 3: Select best petrophysical scenarios 

In this step, the method used to select the best scenarios was to calculate the average 

value of the objective function of each petrophysical image for all the simulations performed 

in the previous step. The average value of each petrophysical image can be expressed to the 

equation below (Eq. 7): 

𝐹(𝑖𝑚𝑖) =
∑ 𝐹(𝑖𝑚𝑖)𝑛𝑛

𝑛=1

∑ 1(𝑖𝑚𝑖)𝑛𝑛
𝑛=1

 ∀ 𝑖, (7) 

where, 𝑖𝑚𝑖 is the petrophysical image i and 𝐹(𝑖𝑚𝑖)
𝑛 is the objective function value in the 

evaluation n (simulation), the overbar denotes average. Basically, this equation expresses the 

ratio of the sum of all objective functions to the number of occurrences for a scenario in n 

simulations. 

2.4 Step 4: Evolutionary Algorithm 

The evolutionary algorithm used in this work was the Designed Exploration and 

Controlled Evolution optimizer (CMOST® DECE). Briefly, this algorithm optimization is 

composed of two steps: a designed exploration stage and a controlled evolution stage. In the 

first stage, some search techniques are utilized with objective of explore throughout the space 

of solutions. In the evolution stage, the evolutionary algorithm is applied with statistical 

methods in the results obtained previously. 

2.5 Step 5: Analysis of the Results 

In this step, the results obtained after the use of the evolutionary algorithm were analyzed 

from two approaches: through the objective function previously defined, and analyzing the 

time series of the wells for the purpose of making a visual analysis of the matching and verify 

mismatches in the simulation model. In analysis stage, the engineer’s experience is 

fundamental, since is possible to re-evaluate the decisions made in the previous stages. 
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3  CASE STUDY 

The simulation model used in this work was the benchmark UNISIM-I, more specifically 

the case study UNISIM-I-H, which consists in perform a history matching with a previously 

defined production strategy. Avansi and Schiozer (2015) detail the construction of the 

benchmark model, due to the objective of this work, only a brief description of the model will 

be presented. 

The reference model was build using public data from Namorado Field, Campos Basin, 

Brazil. The original volume of oil in place is 130 million
 
m³, and the fluid model is black-oil 

with the oil density equal to 28 ºAPI, it is composed by a corner point grid (81x58x20 cells). 

In the most recent work using UNISIM-I-H, Silva et al. (2017) proposed a closed-loop 

reservoir management workflow using ensemble-based methods, presenting consistent results. 

The dataset contains 11 years of observed data (well rates and pressure, field rates and 

average pressure) of 4 original vertical producers, 10 horizontal producers and 11 horizontal 

injector wells. In the simulator, the producer wells are steered on oil rate while the injector 

wells are steered on water rate. 

The uncertainties used in this work were based on the description of the case study. The 

uncertain parameters are: facies, porosity, net-to-gross, permeability, water relative 

permeability, black-oil pressure, volume and temperature dependencies, water oil contact 

depth (WOC), rock compressibility (Cpor) and vertical permeability multiplier (Kz). For the 

levels, 500 equiprobable petrophysical images (scenarios) were generated containing the 

facies, porosity, net-to-gross and the permeabilities (Petro). The black-oil properties (PVT) 

and the water relative permeability (Krw) also have scenarios as uncertainty type, the other 

parameters have triangular probability density functions. The uncertainties attributes can be 

viewed in Table 1. The structural model and the location of wells can be viewed in Figure 3. 

Table 1 - Uncertainties data description. 

  Attributes levels or bounds 

Attribute Type Minimum Most probable Maximum 

Petro 

Discrete 

500 equiprobable scenarios 

Krw 5 equiprobable scenarios 

PVT PVT0 (0.34), PVT1 (0.33), PVT2 (0.33) 

WOC 
Triangular 

Continuous 

3169 3174 3179 

Cpor 10 53 96 

Kz 0 1.5 3 
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Figure 3 - UNISIM-I-H simulation model. 

4  RESULTS AND DISCUSSIONS 

4.1 Steps 1 and 2: 

For the first stage of the methodology, 5000 experiments were performed using the 

random blind search as optimization method. The model has been run for 11 years, 

throughout the period of production history. The results of the simulator were compared with 

the production history thought the production history data available. The parameters evaluated 

in the objective function were the oil, gas and water production rates, injection rates and the 

bottom-hole pressure of the wells. 

In Figure 4 and Figure 5 it is possible to verify the randomness of the algorithm by 

observing the behavior of both parameter and objective function throughout the simulation 

progress. After the first simulation, the results were analyzed by comparing the average value 

of the objective function for each petrophysical scenario through the relative frequency 

histogram, as showed in Figure 6. 

 

Figure 4 - Objective Function values of the fist optimization step of the methodology. 
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Figure 5 - Petrophysical images as example of the behavior of the parameters of the first optimization step 

of the methodology. 

 

Figure 6 - Relative frequency of the average objective function for each petrophysical scenario. 

4.2 Step 3 

For the selection of the scenarios, the best petrophysical images were chosen that 

presented an average error lower than 13.5% (the two columns to the left in Figure 6). In this 

way, 11 scenarios were selected for the next step. The average objective function values of 

these scenarios can be viewed in Table 2, which vary between 11% and 13.5%, with mean 

approximately to 12.5%. 

Table 2 - Average Objective Function values for each petrophysical scenario. 

Petrophysical  

Scenario 

Average Objective  

Function (%) 

389 11,07 

157 11,27 

175 11,61 

324 12,19 

93 12,31 
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Petrophysical  

Scenario 

Average Objective  

Function (%) 

114 13,14 

431 13,15 

206 13,23 

208 13,31 

4.3 Steps 4 and 5 

With the petrophysical scenarios, the next step was run with 1000 experiments for each 

scenario using the evolutionary algorithm as optimization method. The results were compared 

using the objective function and it was possible to observe the reduction of the objective 

function throughout the evaluations. The reduction is presented in detail for the higher and 

lower objective function values before and after the application of the evolutionary algorithm 

(4 scenarios) and for the average of all 11 scenarios chosen in Figure 7, Figure 8, Figure 9 and 

Figure 10. In the all figures, the black dots represent the average value of all scenarios for 

each experiment, and the red dot represents the optimum solution obtained. 

 

Figure 7- Objective function values for scenario “114”.  
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Figure 8 - Objective function values for scenario “208”.  

 

Figure 9 - Objective Function values for scenario “326”.  

 

Figure 10 – Objective Function values for scenario “389”.  

After the second optimization step, the minimum and maximum values of the objective 
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Redefining a new domain as the 11 selected scenarios, it is possible to compare the 

values of the objective function before and after the application of the evolutionary algorithm, 

being possible to verify an improvement in the mean value of the objective functions from 

12.5 to 7 percent (Figure 11). 

 

Figure 11 - Relative frequency before (black) and after (yellow) the evolutionary algorithm of the 

objective function values of the scenarios selected in the first optimization step. 

From the matched scenarios, it is possible to check the quality of the matching visually, 

comparing the time series of wells for each scenario with the observed values. Here, we 

present the time series for one vertical producer (NA1A), one horizontal producer 

(PROD021), and one injector well (INJ019). 

For the vertical producer, a considerable matching has occurred in the bottom-hole 

pressure (Figure 12) and the water rate there was only a slight improvement (Figure 13). For 

the horizontal producer, the bottom-hole pressure matching also obtained a considerable 

improvement (Figure 14) and for the water rate, the scenarios present deviations around the 

observed data (Figure 15). The injector showed great improvement in the bottom-hole 

pressure matching (Figure 16). The deviations in the water rate for some wells need further 

investigation. The yellow lines represent the values for the 11 scenarios optimized with the 

evolutionary algorithm. The black dotted line is the base case and the blue dots are the 

production history data. 

 

Figure 12 - Bottom-hole pressure for well NA1A during the production history period.  
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Figure 13 – Water production rate for well NA1A during the production history period.  

 

Figure 14 - Bottom-hole pressure for well PROD021 during the production history period 

 

Figure 15 - Water production rate for well PROD021 during the production history period.  
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Figure 16 - Bottom-hole pressure for well INJ019 during the production history period.  

Analyzing the plots, it is possible to observe a satisfactory quality of the matching for 

practical purposes. The average value of the objective function after the later step was 

approximately 7.09%, whereas the base case was equivalent to approximately 22.78%. 

5  CONCLUSION 

The possibility of improving the procedure of history matching will be beneficial for 

further field development plans. In this work, a methodology was presented to the realization 

of the history matching, using two optimizations steps: a random blind search and an 

evolutionary algorithm.  

The random blind search proved to be a useful tool for the selection of the best-matched 

discrete parameters and the evolutionary algorithm was able to reduce the objective function 

values for the previously selected scenarios. When evaluating the parameters that influence 

the productivity of the wells, the skin factor proved to be a viable parameter for changing this 

productivity, since its implementation as an uncertain parameter is easier than implementing 

local permeability modifiers. Some wells showed discrepancies in water rate, being necessary 

further investigation. Finally, this methodology could be valuable, because of easy application 

and that presented satisfactory results, showing a reduction in the value of the objective 

function from 22.78 to 7.09 percent approximately. 
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